付費限定

20. 尝试让机器拥有声音

更新於 發佈於 閱讀時間約 26 分鐘


大家好,我是Hivan。

好久不见了,今天我们来讨论下如何让机器拥有声音。

回顾一下我们上一讲的内容,我们已经成功使用Whisper模型使得AI能够理解我们说的话。这为我们带来了很多应用,例如让AI代替我们收听播客并总结内容。然而,这只是单向的交流模式。现在,让我们探索更深入的可能性,让AI不仅仅能够“听懂”我们的话,而且通过ChatGPT回答我们的问题,并将所有内容合成语音,用声音与我们进行双向交互。

这就是我们本次探索的主题:让AI说话。我们将学习如何使用云端API进行语音合成(Text-To-Speech),同时也会介绍开源模型,使您能够在本地CPU上实现这一功能,让数据安全问题不再是困扰。

让我们一起,给机器赋予声音吧!

以行動支持創作者!付費即可解鎖
本篇內容共 10749 字、0 則留言,僅發佈於从零开始接触人工智能大模型你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
avatar-img
9會員
62內容數
从基础开始,再到Python,然后是CV、BI、NLP等相关技术。从头到尾详细的教授一边人工智能。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
茶桁的沙龍 的其他內容
Hi,大家好,我是茶桁。 其实到第18章的时候,我们处理文本的内容就全部都结束了,从本节课开始,我们要开始学习如何处理音频和图像。 我不知道有没有人和我一样的习性,就是比起视频和音频文件来说,还是跟喜欢看文本文件。这其中最主要的一个原因就是因为文本内容我们可以准确定位,而对于文本内容的接收速度还
大家好,我是茶桁。 最近事情太多,这一节课更新的有些晚了。 首先我们先了解一下我们本节课讲要讲一些什么,我们之前介绍过 llama-index 和 LangChain,学习了将大语言模型和自己的知识库组合来解决问题的方法。这个方法中,我们不需要调整我们使用的模型,而是使用嵌入向量索引我们的数据,
Hi,大家好。我是茶桁。 在第 11 讲中,我向您介绍了如何将各种资料内容向量化,借助Llama-index建立索引,对我们自己的文本资料进行问答。在过去的3讲中,我们深入了解了如何使用Langchain。该工具可帮助我们整合AI对语言的理解和组织能力、外部各种资料或者SaaS的API,以及您自己
你好,我是茶桁。 在之前的两讲中,我们深入了解了 Langchain 的 LLMChain 核心功能,它可以帮助我们链式地调用一系列命令,包括直接调用 OpenAI 的 API、调用其他外部接口或自己实现的 Python 代码。但这只是完成一个小任务所需的调用序列。除了这些,LangChain
大家好,我是茶桁. 在上一节课中,我们学习了如何使用LangChain这个Python包链式调用OpenAI的API。通过链式调用,我们可以将需要多轮询问AI才能解决的问题封装起来,将需要多轮自然语言调用才能解决的问题变成一个函数调用。 然而,LangChain对我们的帮助远不止于此。最近,Ch
Hi, 大家好,我是茶桁。 OpenAI 的大语言模型提供了 Completion 和 Embedding 两个核心接口。 我们可以通过增加提示语(Prompt)历史记录来提高模型的回答准确性和自然性。还可以将 Embedding提前索引好存起来,以此做到让AI根据外部知识来回答问题, 在我们
Hi,大家好,我是茶桁。 其实到第18章的时候,我们处理文本的内容就全部都结束了,从本节课开始,我们要开始学习如何处理音频和图像。 我不知道有没有人和我一样的习性,就是比起视频和音频文件来说,还是跟喜欢看文本文件。这其中最主要的一个原因就是因为文本内容我们可以准确定位,而对于文本内容的接收速度还
大家好,我是茶桁。 最近事情太多,这一节课更新的有些晚了。 首先我们先了解一下我们本节课讲要讲一些什么,我们之前介绍过 llama-index 和 LangChain,学习了将大语言模型和自己的知识库组合来解决问题的方法。这个方法中,我们不需要调整我们使用的模型,而是使用嵌入向量索引我们的数据,
Hi,大家好。我是茶桁。 在第 11 讲中,我向您介绍了如何将各种资料内容向量化,借助Llama-index建立索引,对我们自己的文本资料进行问答。在过去的3讲中,我们深入了解了如何使用Langchain。该工具可帮助我们整合AI对语言的理解和组织能力、外部各种资料或者SaaS的API,以及您自己
你好,我是茶桁。 在之前的两讲中,我们深入了解了 Langchain 的 LLMChain 核心功能,它可以帮助我们链式地调用一系列命令,包括直接调用 OpenAI 的 API、调用其他外部接口或自己实现的 Python 代码。但这只是完成一个小任务所需的调用序列。除了这些,LangChain
大家好,我是茶桁. 在上一节课中,我们学习了如何使用LangChain这个Python包链式调用OpenAI的API。通过链式调用,我们可以将需要多轮询问AI才能解决的问题封装起来,将需要多轮自然语言调用才能解决的问题变成一个函数调用。 然而,LangChain对我们的帮助远不止于此。最近,Ch
Hi, 大家好,我是茶桁。 OpenAI 的大语言模型提供了 Completion 和 Embedding 两个核心接口。 我们可以通过增加提示语(Prompt)历史记录来提高模型的回答准确性和自然性。还可以将 Embedding提前索引好存起来,以此做到让AI根据外部知识来回答问题, 在我们
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
了解如何使用 Cloudflare Workers AI 與 Whisper 建立免費開源的語音辨識功能。本文詳細說明註冊步驟、部署流程及程式碼修改,讓你輕鬆將語音轉換成文字。
Thumbnail
還記得我們之前介紹過「【Google Colab Python系列】 初探Whisper: 來一段Youtube影片進行語音辨識吧!」這套語音辨識引擎, 那為什麼我們又要教這一套? 因為我們也可以將whisper的模型轉換成onnx的格式, 輕鬆移植到各種平台, 且效能更佳。 語音辨識的熱門組件之
Thumbnail
今天我要跟大家聊聊 GPT-SoVITS 的用途及其功能。 這個開源的聲音克隆專案,融合了業內頂尖的語音合成工具——GPT (Generative Pre-trained Transformer)模型,和SoVITS(Speech-to-Video Voice Transformation Sys
Thumbnail
免費文字轉語音(Free text to speech)免費的線上語音合成工具,使用微軟 AI 語音庫生成仿真人語音,支援 129 種語言,提供三百多種聲音,輸入文本即可線上聆聽和下載 MP3 檔案。
Thumbnail
OpenAI近期公開了名為「Voice Engine(語音引擎)」的AI模型,使用者只要輸入文字與15秒的音訊樣本,該模型便會自動生成與原說話者相似的語音訊息。AI擬聲,也就是大家常說的聲音克隆(Voice Cloning),這項技術發展迅速,讓我們可以輕易複製一個人的聲音,產生合成語音
Thumbnail
本文介紹如何設置OpenAI API密鑰並使用Whisper API轉寫音訊檔案。文章詳細說明了轉寫單個音訊檔案,以及將長音訊分割並轉寫的過程。透過範例演示,讀者可以學習如何將音訊轉寫為文字,提高工作效率。
Thumbnail
要如何做到無須任何額外訓練樣本就能做到"跨語言"的語音生成,這聽起來很不可思議對吧? 但這就是本篇論文取得的成就,不僅如此,該有的功能,如調整情感,口音節奏,停頓語調這些功能也不在話下。跟著我一起用探秘還有獨立思考的眼光來分析這篇論文,這會是很有趣的旅程。
Thumbnail
本文提供如何使用 Google Colab 結合 Faster Whisper 來提升語音辨識速度與準確性,包含安裝指南與使用方法。探索如何將語音轉換為文本,並對檔案進行不同格式的輸出。
Thumbnail
本篇筆記了如何使用Google Colab和OpenAI的Whisper Large V3進行免費且開源的語音辨識。涵蓋從基礎設定到實際運用的步驟,適合初學者和技術愛好者輕鬆學習語音辨識技術。
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
了解如何使用 Cloudflare Workers AI 與 Whisper 建立免費開源的語音辨識功能。本文詳細說明註冊步驟、部署流程及程式碼修改,讓你輕鬆將語音轉換成文字。
Thumbnail
還記得我們之前介紹過「【Google Colab Python系列】 初探Whisper: 來一段Youtube影片進行語音辨識吧!」這套語音辨識引擎, 那為什麼我們又要教這一套? 因為我們也可以將whisper的模型轉換成onnx的格式, 輕鬆移植到各種平台, 且效能更佳。 語音辨識的熱門組件之
Thumbnail
今天我要跟大家聊聊 GPT-SoVITS 的用途及其功能。 這個開源的聲音克隆專案,融合了業內頂尖的語音合成工具——GPT (Generative Pre-trained Transformer)模型,和SoVITS(Speech-to-Video Voice Transformation Sys
Thumbnail
免費文字轉語音(Free text to speech)免費的線上語音合成工具,使用微軟 AI 語音庫生成仿真人語音,支援 129 種語言,提供三百多種聲音,輸入文本即可線上聆聽和下載 MP3 檔案。
Thumbnail
OpenAI近期公開了名為「Voice Engine(語音引擎)」的AI模型,使用者只要輸入文字與15秒的音訊樣本,該模型便會自動生成與原說話者相似的語音訊息。AI擬聲,也就是大家常說的聲音克隆(Voice Cloning),這項技術發展迅速,讓我們可以輕易複製一個人的聲音,產生合成語音
Thumbnail
本文介紹如何設置OpenAI API密鑰並使用Whisper API轉寫音訊檔案。文章詳細說明了轉寫單個音訊檔案,以及將長音訊分割並轉寫的過程。透過範例演示,讀者可以學習如何將音訊轉寫為文字,提高工作效率。
Thumbnail
要如何做到無須任何額外訓練樣本就能做到"跨語言"的語音生成,這聽起來很不可思議對吧? 但這就是本篇論文取得的成就,不僅如此,該有的功能,如調整情感,口音節奏,停頓語調這些功能也不在話下。跟著我一起用探秘還有獨立思考的眼光來分析這篇論文,這會是很有趣的旅程。
Thumbnail
本文提供如何使用 Google Colab 結合 Faster Whisper 來提升語音辨識速度與準確性,包含安裝指南與使用方法。探索如何將語音轉換為文本,並對檔案進行不同格式的輸出。
Thumbnail
本篇筆記了如何使用Google Colab和OpenAI的Whisper Large V3進行免費且開源的語音辨識。涵蓋從基礎設定到實際運用的步驟,適合初學者和技術愛好者輕鬆學習語音辨識技術。