訓練 OpenAI Whisper V2-幫你的影片上字幕

更新於 發佈於 閱讀時間約 9 分鐘

前言:

幫影片上字幕好麻煩也好無聊,使用網路上的上字幕服務又會擔心腳本外洩,被人侵害著作權,要解決以上痛點,現在有很好用的模型可以自行訓練,讓您製作影片可以把重心放在內容與其他呈現方式。相信本文介紹的解法,你會喜歡💕,想知道更多可以參加免費諮詢,讓我多瞭解各種生活上的痛點,好讓我可以逐步提出解決方案給大家!

大名鼎鼎的openai推出Whisper-large-v2 AI 的第二版,用於語音辨識與翻譯的預訓練模型,Whisper 是Alec Radford 等人在論文Robust Speech Recognition via Large-Scale Weak Supervision中提出的。來自 OpenAI。原始程式碼存儲庫可以在這裡找到。

可以用來辨識多國語言,有興趣的人可以先玩玩看範例

範例包含一個語音檔,以及翻譯後的文字

範例包含一個語音檔,以及翻譯後的文字

影片上字幕程式片段範例:

以下為範例程式,輸入為影片音檔,輸出為翻譯以及語音出現的起始時間與終點時間

import torch
from transformers import pipeline
from datasets import load_dataset

device = "cuda:0" if torch.cuda.is_available() else "cpu"

pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v2",
chunk_length_s=30,
device=device,
)

ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
sample = ds[0]["audio"]

prediction = pipe(sample.copy(), batch_size=8)["text"]

# we can also return timestamps for the predictions
prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"]

#[{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.',
# 'timestamp': (0.0, 5.44)}]

影片字幕翻譯程式片段範例:

下面為字幕自動由法文翻譯成英文的範例

from transformers import WhisperProcessor, WhisperForConditionalGeneration
from datasets import Audio, load_dataset

# load model and processor
processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2")
forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="translate")

# load streaming dataset and read first audio sample
ds = load_dataset("common_voice", "fr", split="test", streaming=True)
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
input_speech = next(iter(ds))["audio"]
input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features

# generate token ids
predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
# decode token ids to text
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)

# [' A very interesting work, we will finally be given on this subject.']​

模型簡介:

Whisper 是一種基於 Transformer 的編碼器-解碼器模型,也稱為Seq-to-seq模型。它接受了 68 萬小時的標記語音資料的訓練,這些資料使用大規模弱監督進行註釋。

這些模型是根據純英語資料或多語言資料進行訓練的。僅英語模型接受了語音辨識任務的訓練。多語言模型接受了語音辨識和語音翻譯的訓練。對於語音識別,該模型會預測與音訊相同語言的轉錄。對於語音翻譯,該模型會預測轉錄為與音訊不同的語言。

Whisper 檢查點有五種不同型號尺寸的配置。最小的四個接受純英語或多語言資料的訓練。最大的檢查站僅支援多種語言。Hugging Face Hub上提供了所有十個預先訓練的預訓練存檔模型

Finetune Whisper模型:

FineTune可以讓模型針對特定任務加以強化,由於預訓練模型是使用英文音檔訓練而成,如果要翻譯中文字幕,則需要對中文的語音資料集Finetune,所幸Mozilla資料集裡面有大量的繁體中文與台灣口音的資料,Finetune起來給台灣人專用也不成問題。

關於Finetune 模型的方法,可以在以下網址找到

https://github.com/openai/whisper/discussions/988

訓練資料採用非營利組織Mozilla所提供的大型多語言監督學習資料

https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0

用電腦自行Finetune成功畫面,Finetune完以後便可自動替所有影片產生字幕SRT檔

用電腦自行Finetune成功畫面,Finetune完以後便可自動替所有影片產生字幕SRT檔

心得:

各種基於Transformer邊解碼器的大型語言模型不斷地冒出來,準確率高,對語言的理解能力強,超乎大眾所想像,相較於傳統的人類上字幕,Openai 公開發表的Whisper V2 可以快速準確且全年無休的把字幕檔產生出來,未來對於內容創作者,可以說是一大福音!

引用:

@misc{radford2022whisper,
doi = {10.48550/ARXIV.2212.04356},
url = {https://arxiv.org/abs/2212.04356},
author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
title = {Robust Speech Recognition via Large-Scale Weak Supervision},
publisher = {arXiv},
year = {2022},
copyright = {arXiv.org perpetual, non-exclusive license}
}

廣告:

本課程早鳥20人已全數招收完畢,感謝支持,不另外招生。

如果你對 AI 充滿熱情,又不想浪費時間,歡迎點擊連結參加免費諮詢,請點擊以下連結預約時間,跟我聊聊你對於目前人工智慧的看法,還有其他想法上變得交流。請準時參加,否則會取消後續參加資格。

 https://calendly.com/universe_ai/free_appointment

avatar-img
95會員
128內容數
帶你用上帝視角,針對市面上具有高度價值的影片/論文/書籍,用東方取象,與西方邏輯辯證的角度同時出發,跟著我一起來探討宇宙萬事萬物的本質,隨時隨地都可以來一場說走就走的思維旅行。作者在台積電 / 聯發科等科技產業有累計10年的資歷,近期對於人工智慧,東方易經,西方辯證邏輯,還有佛法向內求有深度興趣。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
2023年被各大主流媒體稱為AI元年,GPT4 在國際生物奧林匹亞競賽大放異彩,擊敗 99% 的資優生,無人可敵。擁有人工技術,等於擁有世界頂尖員工,24小時不停歇,為你不斷生出結果。然而,多數人對 AI 基本知識仍不明白,知識差距急速擴大,要想不被AI取代,必須懂AI與活用AI。
2023年被各大主流媒體稱為AI元年,GPT4 在國際生物奧林匹亞競賽大放異彩,擊敗 99% 的資優生,無人可敵。擁有人工技術,等於擁有世界頂尖員工,24小時不停歇,為你不斷生出結果。然而,多數人對 AI 基本知識仍不明白,知識差距急速擴大,要想不被AI取代,必須懂AI與活用AI。
本篇參與的主題活動
先前麥克買了在預算及性能方面都十分複合需求的NXTPAPER 11平板,但拿到辦公室使用後便發現因為時不時有簡報需求,主機本身不支援有線視訊輸出實在是非常不方便,因又開始尋找新歡。最終麥克選擇了算是還滿熟悉的品牌小米旗下的小米平板6,以下為麥克這一個月下來的使用心得。
從預計的十月底出貨經過重重波折,Pubu自家開發的10寸彩色閱讀器Pubook Pro終於是送到第一批集資者手中了。究竟這台閱讀器有沒有本事撼動目前的電子紙閱讀器市場?有達到集資時承諾的各項功能嗎?且讓身為首批集資者之一的麥克跟大家談談收到主機後使用數天的感想。
Steam Deck 迎來大改版,最重要的更新就是換成 OLED 螢幕。使用 OLED 螢幕帶來更好看的顏色,大小還小幅提升到 7.4 吋。關係續航力的電池也從 40 瓦小時升級到 50 瓦小時, 3A 大作都可以多玩一小時呢!這麼香的更新,怎麼不給他買下去呢 😄
先前麥克買了在預算及性能方面都十分複合需求的NXTPAPER 11平板,但拿到辦公室使用後便發現因為時不時有簡報需求,主機本身不支援有線視訊輸出實在是非常不方便,因又開始尋找新歡。最終麥克選擇了算是還滿熟悉的品牌小米旗下的小米平板6,以下為麥克這一個月下來的使用心得。
從預計的十月底出貨經過重重波折,Pubu自家開發的10寸彩色閱讀器Pubook Pro終於是送到第一批集資者手中了。究竟這台閱讀器有沒有本事撼動目前的電子紙閱讀器市場?有達到集資時承諾的各項功能嗎?且讓身為首批集資者之一的麥克跟大家談談收到主機後使用數天的感想。
Steam Deck 迎來大改版,最重要的更新就是換成 OLED 螢幕。使用 OLED 螢幕帶來更好看的顏色,大小還小幅提升到 7.4 吋。關係續航力的電池也從 40 瓦小時升級到 50 瓦小時, 3A 大作都可以多玩一小時呢!這麼香的更新,怎麼不給他買下去呢 😄
你可能也想看
Google News 追蹤
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
了解如何使用 Cloudflare Workers AI 與 Whisper 建立免費開源的語音辨識功能。本文詳細說明註冊步驟、部署流程及程式碼修改,讓你輕鬆將語音轉換成文字。
Thumbnail
還記得我們之前介紹過「【Google Colab Python系列】 初探Whisper: 來一段Youtube影片進行語音辨識吧!」這套語音辨識引擎, 那為什麼我們又要教這一套? 因為我們也可以將whisper的模型轉換成onnx的格式, 輕鬆移植到各種平台, 且效能更佳。 語音辨識的熱門組件之
Thumbnail
本文主要使用SpeechRecognition來做一個簡單的語音辨識,使用pyqt5介面呈現。 按下Start Recording,開始錄音,並顯示請開始說話。然後按鈕名改名Stop 在按下Stop Recording,稍等片刻後就會呈現出辨識結果​ 程式範例 import sys i
Thumbnail
紐約時報報導,OpenAI使用了自家的Whisper 轉錄 100 萬個小時的 YouTube 影片作為訓練模型資料。Meta正在討論即使被起訴,也要使用受版權保護的作品來作為模型訓練資料。幾大模型開發者目前都同樣遭遇了「優質訓練資料」不足的困近的困境,而必須走入灰色地帶來支持模型的開發。
Thumbnail
OpenAI近期公開了名為「Voice Engine(語音引擎)」的AI模型,使用者只要輸入文字與15秒的音訊樣本,該模型便會自動生成與原說話者相似的語音訊息。AI擬聲,也就是大家常說的聲音克隆(Voice Cloning),這項技術發展迅速,讓我們可以輕易複製一個人的聲音,產生合成語音
Thumbnail
在 AI 研究的領域中,理解和解釋語言模型如何處理和回應特定輸入始終是一項巨大挑戰。這種復雜性不僅限於模型的規模和結構,還涉及到它們如何在內部做出決策。為了應對這一挑戰,OpenAI 推出了一款名為 Transformer Debugger (TDB) 的工具,旨在深入探索小型語言模型的行為
Thumbnail
本文介紹如何設置OpenAI API密鑰並使用Whisper API轉寫音訊檔案。文章詳細說明了轉寫單個音訊檔案,以及將長音訊分割並轉寫的過程。透過範例演示,讀者可以學習如何將音訊轉寫為文字,提高工作效率。
Thumbnail
本文提供如何使用 Google Colab 結合 Faster Whisper 來提升語音辨識速度與準確性,包含安裝指南與使用方法。探索如何將語音轉換為文本,並對檔案進行不同格式的輸出。
Thumbnail
本篇筆記了如何使用Google Colab和OpenAI的Whisper Large V3進行免費且開源的語音辨識。涵蓋從基礎設定到實際運用的步驟,適合初學者和技術愛好者輕鬆學習語音辨識技術。
我測試的文字轉語音工具,我可以導入4000-5000(甚至高達10,000)個單詞來生成我的音頻檔案。 https://www.text-to-speech.online/ https://ttsmaker.com/ 其他工具但對字符數有一些限制: https://ttsfree.
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
了解如何使用 Cloudflare Workers AI 與 Whisper 建立免費開源的語音辨識功能。本文詳細說明註冊步驟、部署流程及程式碼修改,讓你輕鬆將語音轉換成文字。
Thumbnail
還記得我們之前介紹過「【Google Colab Python系列】 初探Whisper: 來一段Youtube影片進行語音辨識吧!」這套語音辨識引擎, 那為什麼我們又要教這一套? 因為我們也可以將whisper的模型轉換成onnx的格式, 輕鬆移植到各種平台, 且效能更佳。 語音辨識的熱門組件之
Thumbnail
本文主要使用SpeechRecognition來做一個簡單的語音辨識,使用pyqt5介面呈現。 按下Start Recording,開始錄音,並顯示請開始說話。然後按鈕名改名Stop 在按下Stop Recording,稍等片刻後就會呈現出辨識結果​ 程式範例 import sys i
Thumbnail
紐約時報報導,OpenAI使用了自家的Whisper 轉錄 100 萬個小時的 YouTube 影片作為訓練模型資料。Meta正在討論即使被起訴,也要使用受版權保護的作品來作為模型訓練資料。幾大模型開發者目前都同樣遭遇了「優質訓練資料」不足的困近的困境,而必須走入灰色地帶來支持模型的開發。
Thumbnail
OpenAI近期公開了名為「Voice Engine(語音引擎)」的AI模型,使用者只要輸入文字與15秒的音訊樣本,該模型便會自動生成與原說話者相似的語音訊息。AI擬聲,也就是大家常說的聲音克隆(Voice Cloning),這項技術發展迅速,讓我們可以輕易複製一個人的聲音,產生合成語音
Thumbnail
在 AI 研究的領域中,理解和解釋語言模型如何處理和回應特定輸入始終是一項巨大挑戰。這種復雜性不僅限於模型的規模和結構,還涉及到它們如何在內部做出決策。為了應對這一挑戰,OpenAI 推出了一款名為 Transformer Debugger (TDB) 的工具,旨在深入探索小型語言模型的行為
Thumbnail
本文介紹如何設置OpenAI API密鑰並使用Whisper API轉寫音訊檔案。文章詳細說明了轉寫單個音訊檔案,以及將長音訊分割並轉寫的過程。透過範例演示,讀者可以學習如何將音訊轉寫為文字,提高工作效率。
Thumbnail
本文提供如何使用 Google Colab 結合 Faster Whisper 來提升語音辨識速度與準確性,包含安裝指南與使用方法。探索如何將語音轉換為文本,並對檔案進行不同格式的輸出。
Thumbnail
本篇筆記了如何使用Google Colab和OpenAI的Whisper Large V3進行免費且開源的語音辨識。涵蓋從基礎設定到實際運用的步驟,適合初學者和技術愛好者輕鬆學習語音辨識技術。
我測試的文字轉語音工具,我可以導入4000-5000(甚至高達10,000)個單詞來生成我的音頻檔案。 https://www.text-to-speech.online/ https://ttsmaker.com/ 其他工具但對字符數有一些限制: https://ttsfree.