錯誤卻又合理的答案(111高中數學全模選填題)

閱讀時間約 5 分鐘
最近一次加了兩個數學相關的社群,在上面貢獻所長幫忙解題,題目範圍橫跨小學到高中,儘管我已有數年個別班與家教的教學經驗,還是難免會陷入苦戰,就在某天意外遇到這道,過程有點繁瑣,但後續比答案更有意思的題目。

先問問你/你

通常遇到一道不容易的題目,你/妳會怎麼做?!


努力想破頭?跳過?問老師?問同學?上網查資料?翻書?
如果能順利算出答案,那麼不管什麼方法都是好方法~(純猜題例外)
但是努力得到正確答案之後呢?擦掉重新再寫一次?直接下一題?
有沒有一種可能,找出正確答案之後,真正的問題才剛開始?
讓我們一起來認識這道題目


題目

「一個三角形的三邊長為a、b、c,其內切圓半徑為r,外接圓半徑為R,
已知a+b+c:abc=1:72,則R+r的最小值為OO。」

(忘了這是111年第幾次模考的考題,youtube上各有說法)

這題需要的觀念和公式如下

需要用到的公式

  1. 三角形面積=(1/2)×r×(a+b+c)
    (a,b,c為邊長、r為內切圓半徑)
  2. 三角形面積=abc/4R
    (R為外接圓半徑)
  3. 若x,y為正數,則(x+y)/2≧√(xy)(算幾不等式)
    (當x=y時,等號成立)


計算

由題意,可假設a+b+c=x,abc=72x,x≠0(比例式)
由公式1→三角形面積=(1/2)rx
由公式2→三角形面積=72x/4R
則(1/2)rx=72x/4R
等號兩邊消去x→(1/2)r=72/4R(確定x≠0可以左右同除x)
等號兩邊同乘4R→2Rr=72
等號兩邊同除以2→Rr=36
由公式3→(R+r)/2≧√36=6
等號兩邊同乘2→R+r=12#
(盡量把算式寫清楚一點,如果有寫錯,或是有需要修改之處,再請留言提醒❤️)


矛盾點

當時一遇到這題我是有點卡關的,畢竟看到題目問「兩數和的最小值」,依照經驗會聯想到三大不等式(算幾、柯西、三角),經過一段時間思考之後,才想起來三角形面積和R、r之間的關係,也順利計算出12這個答案,剛好也符合選填題當中「OO」兩個空格,但我還是覺得哪裡怪怪的,讓我們回到公式3算幾不等式的最後面:


(當x=y時,等號成立)

但R是外接圓半徑、r是內切圓半徑,它們之間還有一個關係式:R≧2r
也就是外接圓半徑至少是內切圓半徑的2倍(等號成立於正三角形)
既然如此,它們兩個是不可能相等的!
也就是說,這題答案絕不可能是12
但是,大考中心給的答案確實就是12,連詳解都如上所述。
好像,這題就這麼到此為止了。
畢竟,這題一次考到了內切圓半徑、外接圓半徑、算幾不等式
能夠把這麼多觀念考在一起,數字又漂亮,已經實屬難得了。
就將其當作一道代數練習也是不錯。


有沒有真正屬於這題的解答?

先說,這種數學問題不適合問Chatgpt,明明該是邏輯清晰的AI,看似列出一堆算式,卻超級容易鬼打牆,最後都會給出一堆莫名的結果,還時常推翻前面的敘述,打自己的臉......

咳咳,撇開我求助於AI的過程不談。
回到這題,我們想找的是R+r的最小值。代表我們要試著讓R小一點
假如我們已明白,在正三角形的情況下,R有最小值,其值=2r
將這個結論代到「Rr=36」這個算式當中
→2r^2=36→r=3√2,R=3√2×2=6√2
所以R+r的最小值=3√2+6√2=9√2#
因此9√2才是最適合這題的答案。

嗯......還是哪邊怪怪的嗎?
有沒有一種繞了一圈的奇怪感覺?(如果有,那你和我是知音❤️)

噢,搞了半天,R+r最小值成立的時候,這三角形居然是一個正三角形啊?!早說嘛,直接硬算就好啦。


直接當成正三角形再算一次

a+b+c:abc=1:72
因為a=b=c→   3a:a^3=1:72
因為a≠0,同除以a→ 3:a^2=1:72
內項相乘=外項相乘→  a^2=216
→a=6√6
後續簡單畫個正三角形,把線連一連,就可以求出內切圓半徑3√2、外接圓半徑6√2了
相加當然也是前面求出來的最小值9√2(大約是12.726,比12大一點點)

但是,話又說回來。
當初考生如果一開始就用正三角形的想法去列式計算,整體過程會簡單很多,可是少了運用公式1與公式2求出r、R與邊長的關係,而且答案9√2也會與選填題的格數OO完全不同,至此卡住。
(如果選填題要以9√2作為答案,空格處必須為O√O



結論

先感謝你/妳有耐心看完整篇文章。

或者是你/妳對數學完全不感興趣、對公式通通不了解,看到數學就昏頭,想起數學老師就火大,看到旁邊有個結論可以按就直接跳到這裡,那我幫忙再總結一次:

  1. 這是一道111年高中數學模擬考題。
  2. 按照大考中心的算法,可以算出一個漂亮答案。
  3. 答案是錯的,但是考到很多重要的觀念,很值得複習。
  4. 如果學生偷吃步,忽略其他條件,直接把題目給的三角形當成正三角形,會得到真正的正確答案,卻無法作答,因為與選填題給的格數不符。

綜上所述,我認為這題當作純粹複習觀念來說,還是一道好題目,值得深思,這也是學數學、算數學當中,比起觀念、公式、答案,更重要的一部分,就是思辨。時刻思考著,為什麼題目要這麼出?為什麼要運用到這個觀念或公式?答案有沒有哪邊有問題?

多思考,是亙久不變的真理。

跟大家分享我的想法以及我的所見所聞 很多事情沒有對錯 多想想 多思考
留言0
查看全部
發表第一個留言支持創作者!
分享一道數學證明題 題目是將1~10的正整數分成兩組,分別為A組、B組 其中A組數字由小到大排列,B組數字則是由大到小排列,試求兩兩相減的絕對值總和
最近#metoo的事件延燒不斷…...
有一些文章,每一個字的讀音都是同一個音,只有聲調不同,稱為「同音文」,這邊整理幾個特別的同音文與大家分享(文章與翻譯選自網路)
分享一道數學證明題 題目是將1~10的正整數分成兩組,分別為A組、B組 其中A組數字由小到大排列,B組數字則是由大到小排列,試求兩兩相減的絕對值總和
最近#metoo的事件延燒不斷…...
有一些文章,每一個字的讀音都是同一個音,只有聲調不同,稱為「同音文」,這邊整理幾個特別的同音文與大家分享(文章與翻譯選自網路)
你可能也想看
Google News 追蹤
Thumbnail
接下來第二部分我們持續討論美國總統大選如何佈局, 以及選前一週到年底的操作策略建議 分析兩位候選人政策利多/ 利空的板塊和股票
Thumbnail
🤔為什麼團長的能力是死亡筆記本? 🤔為什麼像是死亡筆記本呢? 🤨作者巧思-讓妮翁死亡合理的幾個伏筆
Thumbnail
奧本海默是一部現代史詩,描繪著屬於這個時代才能述說的歷史故事,他如同自幾千年前所流傳的希臘傳說一般,富有人性卻又同時矛盾,既似先知而又脆如凡人。
Thumbnail
社群媒體會導致「過濾氣泡」和「同溫層效應」。也就是說,這只會讓用戶只看到符合其既有觀點和興趣的內容,從而錯過多樣化的信息。 如果要做出更妥善的市場判斷,除了需要在即時的數據和長期的品牌價值之間找到平衡,也要提醒大家要及時『抽身』回到真實的世界中,才能避免陷入數據迷戀和演算法偏見。
KET SPEAKING EX.   What is you name? What is your surname?   Where do you come from? I’m come from Taiwan. (x) I come from Taiwan. (O) / I’
Thumbnail
哈瑪斯創始人之子出面譴責哈瑪斯,此話題在這幾日內依然吸睛。 本文分析「台灣事實查核中心」查核報告發表後,可能出現的情報操作:「時間差攻擊」。 說在前面,並不是指「台灣事實查核中心的查核報告是錯的」,只是要分析這一項查核會如何影響人們的認知。
先問問你/你 通常遇到一道不容易的題目,你/妳會怎麼做?!
LESSON #1: “SKIPPING YOUR DAILY LATTE WILL MAKE YOU A MILLIONAIRE” 第一課:「放棄每天的拿鐵咖啡會讓你成為百萬富翁」 LESSON #2: “OWNING A HOME IS ALWAYS BETTER THAN RENTING”
Thumbnail
你是不是只要臉上冒痘就愛動手去摳、擠?還覺得過程很療育?但往往都會留下一個個疤痕…其實如果平常擠痘痘的方式錯誤,不僅可能會惡化痘痘,嚴重還可能變成坑洞型的嚴重痘疤😥!我抗痘傳教士Alan今天來詳細告訴你擠痘痘的注意事項!
Thumbnail
  很多人以為敷面膜濕敷、塗化妝水就可以保濕?大錯特錯🙅‍♀️這都是商人的行銷手法而已😐你想看看你洗澡接觸那麼久的水,如果敷面膜、濕敷化妝水有用,那你洗澡就可以讓你超級保濕了! 我抗痘傳教士Alan現在馬上來整理幾正確幾點教你保濕!!
Thumbnail
如果你有一個開放的G中心,很難找到你的(正確/對應)位置,但找到正確的位置是至關重要的,因為它會決定愛的質量、方向和身份。理解這一點就是將其視為優勢而不是劣勢。他們不應該像定義了G中心的人那樣試圖保持一致。其次,找到正確的位置通常是通過找到錯誤的位置來消除的過程。它總是歸結為實現你的策略。
Thumbnail
接下來第二部分我們持續討論美國總統大選如何佈局, 以及選前一週到年底的操作策略建議 分析兩位候選人政策利多/ 利空的板塊和股票
Thumbnail
🤔為什麼團長的能力是死亡筆記本? 🤔為什麼像是死亡筆記本呢? 🤨作者巧思-讓妮翁死亡合理的幾個伏筆
Thumbnail
奧本海默是一部現代史詩,描繪著屬於這個時代才能述說的歷史故事,他如同自幾千年前所流傳的希臘傳說一般,富有人性卻又同時矛盾,既似先知而又脆如凡人。
Thumbnail
社群媒體會導致「過濾氣泡」和「同溫層效應」。也就是說,這只會讓用戶只看到符合其既有觀點和興趣的內容,從而錯過多樣化的信息。 如果要做出更妥善的市場判斷,除了需要在即時的數據和長期的品牌價值之間找到平衡,也要提醒大家要及時『抽身』回到真實的世界中,才能避免陷入數據迷戀和演算法偏見。
KET SPEAKING EX.   What is you name? What is your surname?   Where do you come from? I’m come from Taiwan. (x) I come from Taiwan. (O) / I’
Thumbnail
哈瑪斯創始人之子出面譴責哈瑪斯,此話題在這幾日內依然吸睛。 本文分析「台灣事實查核中心」查核報告發表後,可能出現的情報操作:「時間差攻擊」。 說在前面,並不是指「台灣事實查核中心的查核報告是錯的」,只是要分析這一項查核會如何影響人們的認知。
先問問你/你 通常遇到一道不容易的題目,你/妳會怎麼做?!
LESSON #1: “SKIPPING YOUR DAILY LATTE WILL MAKE YOU A MILLIONAIRE” 第一課:「放棄每天的拿鐵咖啡會讓你成為百萬富翁」 LESSON #2: “OWNING A HOME IS ALWAYS BETTER THAN RENTING”
Thumbnail
你是不是只要臉上冒痘就愛動手去摳、擠?還覺得過程很療育?但往往都會留下一個個疤痕…其實如果平常擠痘痘的方式錯誤,不僅可能會惡化痘痘,嚴重還可能變成坑洞型的嚴重痘疤😥!我抗痘傳教士Alan今天來詳細告訴你擠痘痘的注意事項!
Thumbnail
  很多人以為敷面膜濕敷、塗化妝水就可以保濕?大錯特錯🙅‍♀️這都是商人的行銷手法而已😐你想看看你洗澡接觸那麼久的水,如果敷面膜、濕敷化妝水有用,那你洗澡就可以讓你超級保濕了! 我抗痘傳教士Alan現在馬上來整理幾正確幾點教你保濕!!
Thumbnail
如果你有一個開放的G中心,很難找到你的(正確/對應)位置,但找到正確的位置是至關重要的,因為它會決定愛的質量、方向和身份。理解這一點就是將其視為優勢而不是劣勢。他們不應該像定義了G中心的人那樣試圖保持一致。其次,找到正確的位置通常是通過找到錯誤的位置來消除的過程。它總是歸結為實現你的策略。