付費限定

如何使用 MLR 、WLSM或 MLM 估計法計算嵌套模型的卡方檢定?

更新 發佈閱讀 5 分鐘

Satorra 和 Bentler 在一系列論文中討論了連續非常態結果的卡方檢定。 一種流行的檢定統計量是 Satorra-Bentler 縮放(均值調整)卡方,其中通常的正態理論卡方統計量除以縮放校正,可以在非常態性資料中下求得Approximate chi-square 。

Chi-squared distribution

Chi-squared distribution


然而,一個鮮為人知的事實是,這樣的縮放卡方(Scaled chi-square )不能用於嵌套模型的卡方差異測試,因為嵌套模型的兩個縮放卡方之間的差異並不是作為卡方分佈的。 當你採用MLM, MLR, or WLSM...等等估計法時Mplus 會警告你不能這樣做。所以我們需要用網站自動計算器或額外語法幫我們計算Chi-Squar

以行動支持創作者!付費即可解鎖
本篇內容共 2027 字、4 則留言,僅發佈於統計分析 × 學術生涯你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
avatar-img
留言分享你的想法!
avatar-img
教育心理博士的筆記本
261會員
138內容數
文章內容以圖像式和步驟化方式,教您如何在各種統計軟體中(例如:SPSS、R和Mplus),執行多種統計方法。
2025/01/30
當使用MLM或MLR估計法時,需使用Scaled卡方檢定計算嵌套模型之間的卡方差異,本文透過圖文說明,介紹如何使用EXCEL自動計算Scaled卡方檢定,方便且免費。
Thumbnail
2025/01/30
當使用MLM或MLR估計法時,需使用Scaled卡方檢定計算嵌套模型之間的卡方差異,本文透過圖文說明,介紹如何使用EXCEL自動計算Scaled卡方檢定,方便且免費。
Thumbnail
2024/12/30
多層次結構方程模型(MSEM)是一種專為處理多層次資料而設計的結構方程模型,適用於具有群組結構的資料分析。本文介紹多層次結構方程模型(MSEM)的基本概念、公式、以及Mplus語法的基本結構與應用。
Thumbnail
2024/12/30
多層次結構方程模型(MSEM)是一種專為處理多層次資料而設計的結構方程模型,適用於具有群組結構的資料分析。本文介紹多層次結構方程模型(MSEM)的基本概念、公式、以及Mplus語法的基本結構與應用。
Thumbnail
2024/02/27
之前已經說過限制模型,接下來進入下一部份根據Mulder and Hamaker (2021)建議,在 RI-CLPM 中,有許多擴展模型,今天要介紹的是 Extension 1。Extension 1就是加入跨時間不變的預測或結果變項,本文將介紹此模型構造和語法。
Thumbnail
2024/02/27
之前已經說過限制模型,接下來進入下一部份根據Mulder and Hamaker (2021)建議,在 RI-CLPM 中,有許多擴展模型,今天要介紹的是 Extension 1。Extension 1就是加入跨時間不變的預測或結果變項,本文將介紹此模型構造和語法。
Thumbnail
看更多
你可能也想看
Thumbnail
當使用MLM或MLR估計法時,需使用Scaled卡方檢定計算嵌套模型之間的卡方差異,本文透過圖文說明,介紹如何使用EXCEL自動計算Scaled卡方檢定,方便且免費。
Thumbnail
當使用MLM或MLR估計法時,需使用Scaled卡方檢定計算嵌套模型之間的卡方差異,本文透過圖文說明,介紹如何使用EXCEL自動計算Scaled卡方檢定,方便且免費。
Thumbnail
CFA和SEM分析的擬合指標通常需要達到專家門檻,才可以進行分析。我整理知名統計學者Hair的建議,並附上相關文獻佐證,讓讀者能正確地進行模型修正,讓適配指標過關。
Thumbnail
CFA和SEM分析的擬合指標通常需要達到專家門檻,才可以進行分析。我整理知名統計學者Hair的建議,並附上相關文獻佐證,讓讀者能正確地進行模型修正,讓適配指標過關。
Thumbnail
用R語言進行HLM分析第一章將介紹ICC係數定義,並實際示範如何使用R語言計算ICC,並解釋其含意。
Thumbnail
用R語言進行HLM分析第一章將介紹ICC係數定義,並實際示範如何使用R語言計算ICC,並解釋其含意。
Thumbnail
當採用MLM, MLR, or WLSM...等等估計法時,Mplus 會警告不能無法像ML一樣兩個巢套模型直接相減取得正確的Chi-Square和顯著性。所以我們需要用網站自動計算器或額外語法幫我們計算Chi-Square的差異,以下分別介紹不同估計法要用的方法:
Thumbnail
當採用MLM, MLR, or WLSM...等等估計法時,Mplus 會警告不能無法像ML一樣兩個巢套模型直接相減取得正確的Chi-Square和顯著性。所以我們需要用網站自動計算器或額外語法幫我們計算Chi-Square的差異,以下分別介紹不同估計法要用的方法:
Thumbnail
接續第二章內容,本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從公式開始,然後在教學SPSS視窗和語法操作,相信看完後,讀者就會了解雙層次之隨機截距斜率模型概念和操作。
Thumbnail
接續第二章內容,本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從公式開始,然後在教學SPSS視窗和語法操作,相信看完後,讀者就會了解雙層次之隨機截距斜率模型概念和操作。
Thumbnail
本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從最簡單的一個Level 1固定自變項模型開始,到複雜的兩個Level 1和1個Level 2固定自變項模型,相信看完後,讀者就會了解雙層次之隨機截距模型概念和操作。
Thumbnail
本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從最簡單的一個Level 1固定自變項模型開始,到複雜的兩個Level 1和1個Level 2固定自變項模型,相信看完後,讀者就會了解雙層次之隨機截距模型概念和操作。
Thumbnail
在使用Mplus進行統計分析時,我們需要設定各種估計方法,但很多同學可能不知道各種估計方法的適用時機,本文將簡介各種常見的估計法。
Thumbnail
在使用Mplus進行統計分析時,我們需要設定各種估計方法,但很多同學可能不知道各種估計方法的適用時機,本文將簡介各種常見的估計法。
Thumbnail
潛在類別模式(latent class modeling, LCM)和潛在剖面分析(Latent Profile Analysis, LPA)是探討潛在類別變項的統計技術。兩者與因素分析最大的不同在於潛在變項(因素)的形式。本文將介紹潛在類別/剖面/混合分析操作1:找出最佳組數
Thumbnail
潛在類別模式(latent class modeling, LCM)和潛在剖面分析(Latent Profile Analysis, LPA)是探討潛在類別變項的統計技術。兩者與因素分析最大的不同在於潛在變項(因素)的形式。本文將介紹潛在類別/剖面/混合分析操作1:找出最佳組數
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News