易學亂談-「術數」與「代數」(1)-從抽象化開始

更新於 發佈於 閱讀時間約 1 分鐘

在易理這個領域來說,始終都有有關於「數」的討論,而在各種理氣分析而言也隱隱的暗示其「數學性」,最顯著的可能是曆法與天文的計算對於易理哲學的影響與內在性。

那這種關係性究竟從何而來,或許可以從近代數學一窺端倪。

何謂「代數」與其意義

抽象代數

所謂的代數,在一般中學的數學就是「從數字的運算,變成對符號的運算」。

而讓我們直奔當代抽象代數的中心:群論。

群論最簡單粗糙來說,就是:

有一個集合S,跟一個運算元「#」
任兩個集合S中的元素a , b,在經過運算元「#」結合後,會變成另一個元素c,而這個元素c也在集合U中 (a#b = c, c∈U)

最直觀的群就是整數群,1+2=3、110+37=147,不論如何進行「+」運算,結果一定都是「整數」。

在前述案例中,亦可以察覺群論的其中一個重要性質:封閉性。

抽象化的功能

群論至少有幾個功能上的好處:

1、抽象化可以更容易的建立共用法則或關係的型態,也比較容易增減結構。

2、如同前述,群是封閉的,亦即如果要「求解」,而問題本身是在這個群裡面時,那就代表答案也在群裡面,那就至少可能以暴力搜索找到答案。

3、群的封閉性也暗示對稱性或守恆性,這些性質可以簡化問題。

這些功能最典型的體現就是伽羅瓦理論,也就是證明五次以上方程式沒有公式解的理論,而這個證明最直白來說就是「證明五次以上方程式的解都不屬於有公式解的群,所以沒有公式解」。

術數與抽象代數的交界

而從前述的性質,其實也影射了東方術數乃至算命體系背後的思考原則:將世事映射在封閉的運算結構內,並且進行分析。

而這種關聯性,背後也在於人類與自然互動的某些根本性的思考方式,因此下一篇將會討論術數與代數的深層關聯。

留言
avatar-img
留言分享你的想法!
avatar-img
易學小生的沙龍
15會員
74內容數
對於易經的六十四卦,以最簡練的方式呈現卦象、各爻、互錯綜卦、變卦的關係跟意義,作為自己這20餘年學習陰陽五行的總結報告,然後邁向下個階段。
易學小生的沙龍的其他內容
2024/10/11
術數與現代科學的分歧顯現在那些部分、具體造成了什麼差異? 「數」的深層意義,是抽象框架的形成 在更前幾篇寫的,術數的特殊性,在於它潛在的將「命運」這個問題代數化:在命盤的「運算」中,有了什麼氣/星,所以命運變得「比較好」或「比較差」。 而在上一篇,可以看到機率空間對這件事下了更嚴格的定義,而所
2024/10/11
術數與現代科學的分歧顯現在那些部分、具體造成了什麼差異? 「數」的深層意義,是抽象框架的形成 在更前幾篇寫的,術數的特殊性,在於它潛在的將「命運」這個問題代數化:在命盤的「運算」中,有了什麼氣/星,所以命運變得「比較好」或「比較差」。 而在上一篇,可以看到機率空間對這件事下了更嚴格的定義,而所
2024/10/07
從自然現象,到試圖具體化成理論,但自然哲學體系為何後來區分出科學與神秘學兩個道路?這或許可以再從頭梳理。
2024/10/07
從自然現象,到試圖具體化成理論,但自然哲學體系為何後來區分出科學與神秘學兩個道路?這或許可以再從頭梳理。
2024/08/18
最起初的陰陽五行是一種對於世界的理解方法,那對這個理解的應用可以說是一種「元科技」,就是魔法與法術的雛形。而在當代的神秘學思潮,其實也大多是對於這種對元科技的重新考察。 法術的公理 在陰陽五行的體系,其實是存在一些「基本公理」、「基本論證」的,最經典可以彙整如以下幾種。 煉丹術-作用的肌理
2024/08/18
最起初的陰陽五行是一種對於世界的理解方法,那對這個理解的應用可以說是一種「元科技」,就是魔法與法術的雛形。而在當代的神秘學思潮,其實也大多是對於這種對元科技的重新考察。 法術的公理 在陰陽五行的體系,其實是存在一些「基本公理」、「基本論證」的,最經典可以彙整如以下幾種。 煉丹術-作用的肌理
看更多
你可能也想看
Thumbnail
家中修繕或裝潢想要找各種小零件時,直接上網採買可以省去不少煩惱~看看Sylvia這回為了工地買了些什麼吧~
Thumbnail
家中修繕或裝潢想要找各種小零件時,直接上網採買可以省去不少煩惱~看看Sylvia這回為了工地買了些什麼吧~
Thumbnail
👜簡單生活,從整理包包開始!我的三款愛用包+隨身小物清單開箱,一起來看看我每天都帶些什麼吧🌿✨
Thumbnail
👜簡單生活,從整理包包開始!我的三款愛用包+隨身小物清單開箱,一起來看看我每天都帶些什麼吧🌿✨
Thumbnail
創作者營運專員/經理(Operations Specialist/Manager)將負責對平台成長及收入至關重要的 Partnership 夥伴創作者開發及營運。你將發揮對知識與內容變現、影響力變現的精準判斷力,找到你心中的潛力新星或有聲量的中大型創作者加入 vocus。
Thumbnail
創作者營運專員/經理(Operations Specialist/Manager)將負責對平台成長及收入至關重要的 Partnership 夥伴創作者開發及營運。你將發揮對知識與內容變現、影響力變現的精準判斷力,找到你心中的潛力新星或有聲量的中大型創作者加入 vocus。
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 四 公元1887年,德國數學家理查德‧戴德金 (Ri
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 四 公元1887年,德國數學家理查德‧戴德金 (Ri
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 三 必須說一下波希米亞數學家/邏輯學家/哲學家/神學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 三 必須說一下波希米亞數學家/邏輯學家/哲學家/神學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 一 函數概念的發展不可能終結,踏入公元廿一世紀,數學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 一 函數概念的發展不可能終結,踏入公元廿一世紀,數學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動 1.2.6熱的傳導 二 傅立葉認為他的結果對任一函數皆有效,並將函數定義為 (FF) 在一般情況下,函數
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動 1.2.6熱的傳導 二 傅立葉認為他的結果對任一函數皆有效,並將函數定義為 (FF) 在一般情況下,函數
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 一 偏微分方程始於公元十八世紀,在十九世紀茁長壯大。 隨著物理科學擴展越深 (理
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 一 偏微分方程始於公元十八世紀,在十九世紀茁長壯大。 隨著物理科學擴展越深 (理
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動  七 雖然論爭沒有得出任何定論,但對函數概念的演化卻影嚮頗深。 在這次歷時多年的論爭中,函數概念得以擴大而包括
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動  七 雖然論爭沒有得出任何定論,但對函數概念的演化卻影嚮頗深。 在這次歷時多年的論爭中,函數概念得以擴大而包括
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 五 特朗貝爾依循當時數學界對函數的普遍理解,視「函數」為任一分析式。 但這時的歐拉宣稱函數不必是正常意義下的
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 五 特朗貝爾依循當時數學界對函數的普遍理解,視「函數」為任一分析式。 但這時的歐拉宣稱函數不必是正常意義下的
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 二 這一百廿一頁其實只是第一版的一個附錄,名為「幾何學」。除了坐標系統的引進,笛卡兒明顯地結合了幾何和代數的語言。事實上,所謂「解析幾何」就是用代數方法表述被
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 二 這一百廿一頁其實只是第一版的一個附錄,名為「幾何學」。除了坐標系統的引進,笛卡兒明顯地結合了幾何和代數的語言。事實上,所謂「解析幾何」就是用代數方法表述被
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 一 因此打從輪廓的浮現,萌牙狀態的函數概念是一個幾何圖象。 有趣的是,兩個世紀之後,即公元十六世紀,歐洲文藝復興如日中天,法國數學家及哲學家勒內‧笛卡兒承襲
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 一 因此打從輪廓的浮現,萌牙狀態的函數概念是一個幾何圖象。 有趣的是,兩個世紀之後,即公元十六世紀,歐洲文藝復興如日中天,法國數學家及哲學家勒內‧笛卡兒承襲
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News