大型語言模型真的會改變我們的工作方式嗎?

更新於 發佈於 閱讀時間約 3 分鐘


大型語言模型 (LLM) 在最近幾年取得了重大進展,並引起了人們對生成式AI將如何影響工作方式的廣泛重視。雖然 LLM 具有強大的文本生成、翻譯和理解能力,但它們對工作的影響仍然是一個複雜且充滿爭議的話題。


就有一篇 MIT 史隆商業評論的撰文針對上述的問題進行分析,這篇文章引述了多篇研究進行分析,並提出對於組織管理者在使用生成式AI上的建議。這篇文章很值得預備採納生成式AI進入組織的管理者參考,因此,分享給大家。


做好三件事情為導入LLM做好準備

作者認為組織要做三件事情為大型語言模型做好準備工作。

第一,組織內應該制訂並且發布可接受的使用標準(Acceptable Use Standard)

即便目前幾乎無法阻止員工嘗試使用大型語言模型,但是在現階段就建立使用基本規則是很重要的。例如企業應禁止將「專有數據(影像、文字、文件、數據等關鍵資訊)」上傳到第三方大型語言模型,以及需要揭露共享文件檔案時,應該載明「是否」以及「如何」使用大型語言模型。另一種方法是使用諸如 Amazon Q 之類的工具,這是一種生成式人工智能聊天機器人,可以根據組織的可接受使用策略進行客製化,例如誰可以訪問大型語言模型,可以使用哪些數據等等。


第二,創建中央辦公室來生成所有應用LLM所產出的輸出

這個做法可以幫助組織遵守「可接受的使用標準」並管理「數據污染」等問題。中央辦公室可以提供創建「提示詞」和「解釋答案可變性」的指引。還提供了規模經濟的機會。畢竟,讓一名數據管理員負責所有可用於分析的公司數據,比讓每個可能的使用者自己管理數據要高效得多,也更容易管理。同時,在最初,制定規則時需要召開一個任務編組,其中包括來自 IT 部門、法遵部門和可能的使用者部門。任務編組和後來的中央辦公室可以幫助解決來自「阻礙機器學習」和數據分析使用的「數據管理」的挑戰。


第三,培訓使用大型語言模型的工作人員

任何可能需要大型語言模型或需要使用它們的人員都應該接受簡單的培訓,以瞭解這些工具的「問題」(尤其是它們產生幻覺的現象)以及如何評估人工智能生成的文檔和報告。下一步是對員工進行「提示詞設計」和「改進方面的培訓」。在使用大型語言模型輸出之前,闡明和傳達一個標準同樣重要,該標準構成“足夠好”的標準。中央辦公室可以促進最適合組織的培訓。


更深一層的管理問題

企業主是否應該改變未來工作的招聘標準或開始計劃裁員?

大衆媒體上關於人工智慧將消除大量工作的大量說法會給投資者和利益相關者帶來壓力,要求進行裁員。提醒他們其他預測的不準確性可能會有所幫助;例如,此前預測卡車司機將被機器人司機大量取代的預測並沒有成真。從長遠來看,一旦我們弄清楚大型語言模型可以用於工作的不同方式,我們就可以看看是否可以重新組織任務以提高效率。現在就開始修改與供應商的合同或裁員將是輕率的。歷史表明,從長遠來看,新技術創造的工作崗位比淘汰的要多。關於 IT 創新(尤其是人工智慧)導致大規模失業的預測尚未實現。改變工作分配的技術發展通常會緩慢發生。


大型語言模型是否會普遍被使用?但是能夠裁員嗎?

  1. 作者認為大型語言模型的使用會很普遍,但即使廣泛使用大型語言模型,工作崗位的流失也會相對較少。認爲這些工具可以大量取代工作崗位的想法必須面對這樣一個現實:
  2. 大型語言模型已經在某種程度上實現了自動化。但是可以透過LLM所完成的最重要任務中,還會產生新的任務,並且在現有員工之間能夠重新安排工作,並找到可以裁掉的冗餘職位並不太容易。

技術決定論——技術變革是塑造社會的主要因素這一觀念——在創造技術的人們眼中很流行,但在研究技術的人眼中卻缺乏可信度。

資料來源:MIT Sloan Management Review



留言
avatar-img
留言分享你的想法!
avatar-img
M-Insight:AI科技創新
18會員
24內容數
M-Insight : AI科技創新 分享有關人工智慧對於產業與企業的實務應用、研究成果、產業情報等資訊,歡迎人工智慧、醫藥生技、科技管理領域的同好、專家學者、醫師、研究人員與業界朋友一同參與交流。
2024/05/01
生成式AI的進展大幅地影響著整個世界。企業從使用AI工具中看到了三個主要方面的收益包括提高銷售生產力、增加客戶滿意度和降低行銷開銷成本。這篇文章探討了AI在行銷中的應用和投資回報,並指出了使用時間、公司的數字化轉型階段和實驗對於AI工具的使用和效果有著重要影響。
Thumbnail
2024/05/01
生成式AI的進展大幅地影響著整個世界。企業從使用AI工具中看到了三個主要方面的收益包括提高銷售生產力、增加客戶滿意度和降低行銷開銷成本。這篇文章探討了AI在行銷中的應用和投資回報,並指出了使用時間、公司的數字化轉型階段和實驗對於AI工具的使用和效果有著重要影響。
Thumbnail
2024/04/30
近年來,生成式AI對市場帶來了巨大變革,然而,企業的AI專案卻面臨許多部署和失敗的問題。從MIT Sloan Management Review的研究中,我們發現數據科學家在尋找防止AI模型失敗的模式上面存在許多問題。本文提供了三個觀點,協助缺乏技術的高階主管針對辨識有效的AI模型和數據集提出方法。
Thumbnail
2024/04/30
近年來,生成式AI對市場帶來了巨大變革,然而,企業的AI專案卻面臨許多部署和失敗的問題。從MIT Sloan Management Review的研究中,我們發現數據科學家在尋找防止AI模型失敗的模式上面存在許多問題。本文提供了三個觀點,協助缺乏技術的高階主管針對辨識有效的AI模型和數據集提出方法。
Thumbnail
2024/03/16
MIT Sloan Management Review 刊登了一篇關於生成式人工智能中獲利者的新觀點文章,從技術架構到主要獲利者,以及面臨的機會與挑戰進行了探討。對於AI行業的從業者和學術研究人員來說,這份文章提供了寶貴的資訊。
Thumbnail
2024/03/16
MIT Sloan Management Review 刊登了一篇關於生成式人工智能中獲利者的新觀點文章,從技術架構到主要獲利者,以及面臨的機會與挑戰進行了探討。對於AI行業的從業者和學術研究人員來說,這份文章提供了寶貴的資訊。
Thumbnail
看更多
你可能也想看
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
在當今快速變化的數位時代,企業面臨著前所未有的數據處理需求。為了應對這些挑戰,企業紛紛建立自己的大型語言模型(LLM),利用大量數據進行訓練,讓模型能夠理解並生成自然語言,從而實現人機協作,優化業務流程並提升客戶體驗。
Thumbnail
在當今快速變化的數位時代,企業面臨著前所未有的數據處理需求。為了應對這些挑戰,企業紛紛建立自己的大型語言模型(LLM),利用大量數據進行訓練,讓模型能夠理解並生成自然語言,從而實現人機協作,優化業務流程並提升客戶體驗。
Thumbnail
在當今快速發展的技術時代,人工智能 Artificial Intelligence 和機器學習 Machine Learning 已成為推動業務創新和增長的重要力量。從改善客戶服務到優化運營流程,AI和ML的應用範圍日益廣泛,為企業創造出前所未有的機會。企業又可如何利用AI和ML提升業務呢?
Thumbnail
在當今快速發展的技術時代,人工智能 Artificial Intelligence 和機器學習 Machine Learning 已成為推動業務創新和增長的重要力量。從改善客戶服務到優化運營流程,AI和ML的應用範圍日益廣泛,為企業創造出前所未有的機會。企業又可如何利用AI和ML提升業務呢?
Thumbnail
老實說,原本的我一直認為,AI是離我很遠的東西,即使是去年的 ChatGPT 熱潮,我也只是跟著偶爾在工作中跟AI聊天激發靈感而已。不過,就在前一陣子看了《AI 世界的底層邏輯與生存法則》這本書後,我才逐漸加深使用AI的頻率,並且把「讓AI成為工作中的標配」當作讓自己能習慣的方向。
Thumbnail
老實說,原本的我一直認為,AI是離我很遠的東西,即使是去年的 ChatGPT 熱潮,我也只是跟著偶爾在工作中跟AI聊天激發靈感而已。不過,就在前一陣子看了《AI 世界的底層邏輯與生存法則》這本書後,我才逐漸加深使用AI的頻率,並且把「讓AI成為工作中的標配」當作讓自己能習慣的方向。
Thumbnail
通用型AI還沒那麼快出現 所以說人類的工作要全面被取代 目前不會發生 但如果是"部分"的專精工作 可以被模組化 高重複性 可被預測 與其說取代人類工作 不如說 AI可以替代部分"流程" 如果有專屬於法律條文聊天機器人 或是 專屬於公司內部規章的聊天機器人 遇到問題 或是不確定的流程 直接詢
Thumbnail
通用型AI還沒那麼快出現 所以說人類的工作要全面被取代 目前不會發生 但如果是"部分"的專精工作 可以被模組化 高重複性 可被預測 與其說取代人類工作 不如說 AI可以替代部分"流程" 如果有專屬於法律條文聊天機器人 或是 專屬於公司內部規章的聊天機器人 遇到問題 或是不確定的流程 直接詢
Thumbnail
AI 的廣泛應用正在改變工作方式和商業模式。一個備受關注的領域是生成式 AI,它能夠創造新內容並執行各種任務,從撰寫博客文章到生成圖像和對話聊天。然而,企業在嘗試引入生成式 AI 時,常常會面臨一些常見的誤解和困惑。本文將解析這其中的兩大迷思,幫助您更好地瞭解在哪些工作崗位上讓 AI 發揮作用是最合
Thumbnail
AI 的廣泛應用正在改變工作方式和商業模式。一個備受關注的領域是生成式 AI,它能夠創造新內容並執行各種任務,從撰寫博客文章到生成圖像和對話聊天。然而,企業在嘗試引入生成式 AI 時,常常會面臨一些常見的誤解和困惑。本文將解析這其中的兩大迷思,幫助您更好地瞭解在哪些工作崗位上讓 AI 發揮作用是最合
Thumbnail
已經成真的AI生成文字、圖片、音樂、影片,以及接下來更多的AI運用場景,每一項都將對人類社會產生重大的影響:包括抽象的人心、文化、審美、親密關係,以及實質的就業、經濟、生活、生涯規劃等。 本文我會以大量使用、測試AI的經驗,輔以田野調查的經驗,詳細說明AI時代最應該培養的四項能力。
Thumbnail
已經成真的AI生成文字、圖片、音樂、影片,以及接下來更多的AI運用場景,每一項都將對人類社會產生重大的影響:包括抽象的人心、文化、審美、親密關係,以及實質的就業、經濟、生活、生涯規劃等。 本文我會以大量使用、測試AI的經驗,輔以田野調查的經驗,詳細說明AI時代最應該培養的四項能力。
Thumbnail
大型語言模型 (LLM) 在最近幾年取得了重大進展,並引起了人們對生成式AI將如何影響工作方式的廣泛重視。雖然 LLM 具有強大的文本生成、翻譯和理解能力,但它們對工作的影響仍然是一個複雜且充滿爭議的話題。 本文摘要自MIT 史隆管理評論,分析LLM 對工作帶來的影響。
Thumbnail
大型語言模型 (LLM) 在最近幾年取得了重大進展,並引起了人們對生成式AI將如何影響工作方式的廣泛重視。雖然 LLM 具有強大的文本生成、翻譯和理解能力,但它們對工作的影響仍然是一個複雜且充滿爭議的話題。 本文摘要自MIT 史隆管理評論,分析LLM 對工作帶來的影響。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News