LLM 002|大語言模型中的「大」是如何幫助預測下一個字的?

更新於 發佈於 閱讀時間約 1 分鐘

大語言模型是一種特殊的神經網路,設計來理解,生成與回應人類的文本。


大語言模型是使用大量文本數據訓練的深度神經網路,其訓練使用的文本數據甚至包括了整個網路公開的文本。


大語言模型的「大」,體現於模型的參數個數以及其使用的訓練數據集。如此大的模型可以有百億甚至千億的參數。這些參數都是神經網路可調整的權重,為了正確預測序列的下一個文字而進行優化。


預測下一個字其實很合理。


這是因為語言本身有內蘊的順序結構,而語言模型學習這個順序結構來理解文本背後的脈絡,結構與關聯。


預測下一個字是一個簡單的任務,


所以大語言模型能夠成為這麼全能的模型非常令人驚喜。


大語言模型使用Transformer架構。


Transfomer架構讓大語言模型在進行預測時,將注意力放在輸入文本的不同區域。


這種可選擇性的注意能力,讓大語言模型能夠處理人類語言的微妙之處與複雜之處。


留言
avatar-img
留言分享你的想法!
avatar-img
王啟樺的沙龍
587會員
1.9K內容數
Outline as Content
王啟樺的沙龍的其他內容
2024/04/28
在上一期「LLM 005|大語言模型是如何利用Transformer理解語言的?」我們提到,Transformer是大語言模型理解語言的關鍵。 而Transformer架構兩個主要的後代是BERT以及GPT。 BERT是bidirectional encoder representati
2024/04/28
在上一期「LLM 005|大語言模型是如何利用Transformer理解語言的?」我們提到,Transformer是大語言模型理解語言的關鍵。 而Transformer架構兩個主要的後代是BERT以及GPT。 BERT是bidirectional encoder representati
2024/04/27
現代大語言模型建構於Transformer結構。 Transformer結構是源自於2017年著名論文 Attention Is All You Need的深度神經網路結構。 原始的Trasformer是為了機器翻譯發展,當初的任務是將英文翻譯成德文與法文。 Transformer
2024/04/27
現代大語言模型建構於Transformer結構。 Transformer結構是源自於2017年著名論文 Attention Is All You Need的深度神經網路結構。 原始的Trasformer是為了機器翻譯發展,當初的任務是將英文翻譯成德文與法文。 Transformer
2024/04/26
從頭開始寫大語言模型的程式碼, 是最好理解大語言模型的機制與限制的方風。 從頭開始寫大語言模型的程式碼,可以幫助我們得到預訓練與微調整開源大語言模型架構所需要的知識,並應用到特定領域的數據及以及任務。 客製化大語言模型一般來說比起通用大語言模型有更好的表現。 一個具體的例子是
2024/04/26
從頭開始寫大語言模型的程式碼, 是最好理解大語言模型的機制與限制的方風。 從頭開始寫大語言模型的程式碼,可以幫助我們得到預訓練與微調整開源大語言模型架構所需要的知識,並應用到特定領域的數據及以及任務。 客製化大語言模型一般來說比起通用大語言模型有更好的表現。 一個具體的例子是
看更多
你可能也想看
Thumbnail
家中修繕或裝潢想要找各種小零件時,直接上網採買可以省去不少煩惱~看看Sylvia這回為了工地買了些什麼吧~
Thumbnail
家中修繕或裝潢想要找各種小零件時,直接上網採買可以省去不少煩惱~看看Sylvia這回為了工地買了些什麼吧~
Thumbnail
👜簡單生活,從整理包包開始!我的三款愛用包+隨身小物清單開箱,一起來看看我每天都帶些什麼吧🌿✨
Thumbnail
👜簡單生活,從整理包包開始!我的三款愛用包+隨身小物清單開箱,一起來看看我每天都帶些什麼吧🌿✨
Thumbnail
創作者營運專員/經理(Operations Specialist/Manager)將負責對平台成長及收入至關重要的 Partnership 夥伴創作者開發及營運。你將發揮對知識與內容變現、影響力變現的精準判斷力,找到你心中的潛力新星或有聲量的中大型創作者加入 vocus。
Thumbnail
創作者營運專員/經理(Operations Specialist/Manager)將負責對平台成長及收入至關重要的 Partnership 夥伴創作者開發及營運。你將發揮對知識與內容變現、影響力變現的精準判斷力,找到你心中的潛力新星或有聲量的中大型創作者加入 vocus。
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 17中,介紹了大型語言模型 (LLM)世界裡面常用到的Token,現在我們來談談OpenAI的GPT模型如何利用Inference
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 17中,介紹了大型語言模型 (LLM)世界裡面常用到的Token,現在我們來談談OpenAI的GPT模型如何利用Inference
Thumbnail
這篇研究探討了不同醫學主題中,大型語言模型對於知識的性能差異,特別是針對腫瘤學領域的幾種主流LLMs進行評估。研究表明,大型語言模型在基礎主題上展示出比臨床腫瘤學更高的準確性,但模型仍具有一定程度的不準確性。研究結果為醫療專業人員和患者更有效地利用LLMs提供了實證支持。
Thumbnail
這篇研究探討了不同醫學主題中,大型語言模型對於知識的性能差異,特別是針對腫瘤學領域的幾種主流LLMs進行評估。研究表明,大型語言模型在基礎主題上展示出比臨床腫瘤學更高的準確性,但模型仍具有一定程度的不準確性。研究結果為醫療專業人員和患者更有效地利用LLMs提供了實證支持。
Thumbnail
隨著人工智慧和大型語言模型(LLMs)的快速發展,AI Singapore與Google Research合作推出的SEALD計畫旨在收集和加強東南亞九種語言的多語言數據集,提升這些語言大型語言模型的文化意識和應用能力,推動東南亞語言和文化敏感性的LLMs的發展。
Thumbnail
隨著人工智慧和大型語言模型(LLMs)的快速發展,AI Singapore與Google Research合作推出的SEALD計畫旨在收集和加強東南亞九種語言的多語言數據集,提升這些語言大型語言模型的文化意識和應用能力,推動東南亞語言和文化敏感性的LLMs的發展。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
Thumbnail
大型語言模型(LLM)是基於深度學習的自然語言處理模型,而多模態模型(LMM)能處理多種資料型態。這些模型將對未來帶來重大改變。LLM 專注於理解和生成自然語言,LMM 能夠處理跨模態的內容,並整合多種資料的能力,有望成為未來趨勢。
Thumbnail
大型語言模型(LLM)是基於深度學習的自然語言處理模型,而多模態模型(LMM)能處理多種資料型態。這些模型將對未來帶來重大改變。LLM 專注於理解和生成自然語言,LMM 能夠處理跨模態的內容,並整合多種資料的能力,有望成為未來趨勢。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」。 Prompt Pattern 是給予LLM的指示,並確保生成的輸出擁有特定的品質(和數量)。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」。 Prompt Pattern 是給予LLM的指示,並確保生成的輸出擁有特定的品質(和數量)。
Thumbnail
大語言模型(LLMs)對於任何對人工智能和自然語言處理感興趣的人來說都是一個令人興奮的領域。 這類模型,如GPT-4, 透過其龐大的數據集和複雜的參數設置, 提供了前所未有的語言理解和生成能力。 那麼,究竟是什麼讓這些模型「大」得如此不同呢?
Thumbnail
大語言模型(LLMs)對於任何對人工智能和自然語言處理感興趣的人來說都是一個令人興奮的領域。 這類模型,如GPT-4, 透過其龐大的數據集和複雜的參數設置, 提供了前所未有的語言理解和生成能力。 那麼,究竟是什麼讓這些模型「大」得如此不同呢?
Thumbnail
對於熱衷於語言科技的你, 大語言模型(LLMs)在自然語言處理(NLP)領域的發展無疑是一個革命性的進展。 從傳統的規則系統到基於深度學習的方法, LLMs展現了在理解、生成和翻譯人類語言方面的巨大突破。 這不僅是技術上的飛躍, 更是開啟了新的應用和可能性。 下面將介紹這一變革帶來的三大
Thumbnail
對於熱衷於語言科技的你, 大語言模型(LLMs)在自然語言處理(NLP)領域的發展無疑是一個革命性的進展。 從傳統的規則系統到基於深度學習的方法, LLMs展現了在理解、生成和翻譯人類語言方面的巨大突破。 這不僅是技術上的飛躍, 更是開啟了新的應用和可能性。 下面將介紹這一變革帶來的三大
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News