使用Meta釋出的模型,實作Chat GPT - Part 6

使用Meta釋出的模型,實作Chat GPT - Part 6

更新於 發佈於 閱讀時間約 2 分鐘

到目前為止,我們已經完成RAG技術的實作,在上一篇文章使用Meta釋出的模型,實作Chat GPT - Part 5中,可以看到加入RAG之後,可以讓我的大型語言模型回答更為精確。

現在我們要把它用一個畫面做呈現,而不是以程式碼來給大家看,就類似Chat GPT這樣,背後有複雜的程式運行,但是眾人所看到的是漂亮的UI畫面,以下開始實作:

import gradio as gr
Chat_History = []

with gr.Blocks() as GUI:
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.ClearButton([msg, chatbot])

def respond(message, chat_history):
bot_message = RAG({"question": message, "chat_history": Chat_History})['answer']
Chat_History.append((message, bot_message)) # Chatting Used
chat_history.append((message, bot_message)) # UI Showing
return "", chat_history

msg.submit(respond, [msg, chatbot], [msg, chatbot])

GUI.launch()

程式撰寫後,如下,我們一樣按「紅色框框」執行,大約四秒後,執行完成,可以在「紅色框框」處的綠色提示得知 (4秒處)

raw-image

執行完成後,可以在執行結果處看到以下畫面,點擊當中的藍色網址即可跳出新的畫面,這串藍色網址會因人而異,不需要跟我的執行結果一致沒關係。

raw-image

然後就可以跳出一個漂亮的UI畫面了,如下圖:

raw-image

接著我在Textbox這個欄位輸入:「what is 1688 ?」,看它是不是會回我訊息。

raw-image

稍等一段時間後,它回我如下訊息:

raw-image

接著我可以在Textbox再輸入一些訊息,比方說我質問它真的嗎?

raw-image

可以看到它就會再做一些額外陳述,藉此我們就完成一個窮人版的Chat GPT搭配RAG技術的實作。

avatar-img
Learn AI 不 BI
218會員
576內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言
avatar-img
留言分享你的想法!
Learn AI 不 BI 的其他內容
最近接了一個AI專案,客戶要求以AI方式實現節能功能,以下提供我的專案思考軌跡: 面對這樣的技術,我第一個想到使用Reinforcement Learning技術,然而這裡我思考一件事,這個專案是要幫助客戶賺錢的,在沒有Digital Twin的搭配之下,貿然使用Reinforcement L
上週發了一篇AI書單推薦 今天來談談,我是怎麼學習的,我總共學了七年AI,自然對於一個小白想入門有更深刻的體悟,更能了解怎麼樣學習才能不至於一次面臨太多困難而放棄 我的建議是這樣: 先花兩年把Machine Learning學完,當中會遇到很多數學問題,這方面可以「在遇到問題時」再去翻
這篇介紹我看過的AI書籍中,覺得很棒的書單,我按照不同的AI作法來分類: Machine Learning: Pattern Recognition and Machine Learning, Christopher M. Bishop, 2011 The Elements of Statis
最近接了一個AI專案,客戶要求以AI方式實現節能功能,以下提供我的專案思考軌跡: 面對這樣的技術,我第一個想到使用Reinforcement Learning技術,然而這裡我思考一件事,這個專案是要幫助客戶賺錢的,在沒有Digital Twin的搭配之下,貿然使用Reinforcement L
上週發了一篇AI書單推薦 今天來談談,我是怎麼學習的,我總共學了七年AI,自然對於一個小白想入門有更深刻的體悟,更能了解怎麼樣學習才能不至於一次面臨太多困難而放棄 我的建議是這樣: 先花兩年把Machine Learning學完,當中會遇到很多數學問題,這方面可以「在遇到問題時」再去翻
這篇介紹我看過的AI書籍中,覺得很棒的書單,我按照不同的AI作法來分類: Machine Learning: Pattern Recognition and Machine Learning, Christopher M. Bishop, 2011 The Elements of Statis