這篇介紹我看過的AI書籍中,覺得很棒的書單,我按照不同的AI作法來分類:Machine Learning:Pattern Recognition and Machine Learning, Christopher M. Bishop, 2011The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition, Trevor Hastie , Robert Tibshirani, Jerome Friedman, 2009An Introduction to Statistical Learning: with Applications in R, Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, 2021Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, Aurélien Géron, 2022統計學習方法, Second Edition, 李航, 2019機器學習, 周志華, 2016機器學習方法, 李航, 2022Deep Learning:Deep Learning, Ian Goodfellow, Yoshua Bengio, Aaron Courville, 2016Deep Learning with Python, Second Edition, Francois Chollet, 2021Unsupervised Learning:Hands-On Unsupervised Learning Using Python, Ankur Patel, 2019Reinforcement Learning:Dynamic Programming and Optimal Control (2 Vol Set), Dimitri P. Bertsekas, 2012Reinforcement Learning and Optimal Control, Dimitri P. Bertsekas, 2019Rollout, Policy Iteration, and Distributed Reinforcement Learning, Dimitri P. Bertsekas, 2020Neuro-Dynamic Programming, Dimitri P. Bertsekas, John N. Tsitsiklis, 1996Deep Reinforcement Learning Hands-On - Second Edition, Maxim Lapan, 2020Reinforcement Learning, second edition, Richard S. Sutton, Andrew G. Barto, 2018Statistical Reinforcement Learning: Modern Machine Learning Approaches, Masashi Sugiyama, 2015要學會AI,尚需要一些周邊技能,這邊我推薦:Elements of Information Theory 2nd Edition, Thomas M. Cover, Joy A. Thomas, 2006Nonlinear Programming 3rd Edition, Dimitri P. Bertsekas, 2016Numerical Optimization 2nd Edition, Jorge Nocedal, Stephen Wright, 2006Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory, Steven Kay, 1993Adaptive Signal Processing, Bernard Widrow, 1985這些都是我自己看完 (花了七年),覺得很棒的書單,讓大家少走一些冤枉路。不同的程度有不同的閱讀順序,若大家有閱讀順序上的疑慮,我可以再進一步補充。