談談未來的AI趨勢

更新 發佈閱讀 2 分鐘

我們知道AI的作法可以分為Supervised Learning、Unsupervised Learning、Reinforcement Learning,整題區分如下圖:

raw-image

圖片出處:https://www.superannotate.com/blog/supervised-learning-and-other-machine-learning-tasks

當中的Supervised Learning仰賴貼標資料,有在業界工作的朋友就知道,現實的資料是殘缺不全,要有貼標的資料進行Supervised Learning是一件很奢侈的事情。


然而不管在什麼領域,引入AI之後,似乎都會開始強調「自動化」,這需要幾個元件來組成:「觀察」、「執行」、「回饋」等等。


這和人類的學習很相似,面對一件未知的事情,當需要作出決策時,就需要「觀察現況」,再以此「做出動作」,最後也因為這動作而有「回饋」,不論是好還是壞,都為這動作做了一個「評分」,這些都是經驗,為往後面對相似情況而需要做決策時,提供「參考經驗」,這正是Reinforcement Learning的運作機制。


我自己處的產業,也開始著手進行AI化,不外乎開始強調「自動化」、「Closed Loop Optimization」等等,這些面向都和Reinforcement Learning脫離不了關係,這觀察和NVIDIA 黃仁勳受訪時的觀察差不多,詳細採訪內容可以參照:
https://hao.cnyes.com/post/74186?utm_source=cnyes&utm_medium=home&utm_campaign=postid


而Reinforcement Learning的重要性還可以從一個方面來看,那就是ChatGPT的訓練過程也使用到此技術,當中用到Reinforcement Learning from Human Feedback (RLHF),可以參照:
https://www.cc.ntu.edu.tw/chinese/spotlight/2023/a111029.asp


有鑒於此,本頻道也開始分享Reinforcement Learning相關技術,可以參照:
Chat GPT - 用RLHF做Fine Tuning
Trust Region Policy Optimization教學 - Part 1

留言
avatar-img
Learn AI 不 BI
246會員
1.1K內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
Learn AI 不 BI的其他內容
2024/05/25
最近接了一個AI專案,客戶要求以AI方式實現節能功能,以下提供我的專案思考軌跡: 面對這樣的技術,我第一個想到使用Reinforcement Learning技術,然而這裡我思考一件事,這個專案是要幫助客戶賺錢的,在沒有Digital Twin的搭配之下,貿然使用Reinforcement L
2024/05/25
最近接了一個AI專案,客戶要求以AI方式實現節能功能,以下提供我的專案思考軌跡: 面對這樣的技術,我第一個想到使用Reinforcement Learning技術,然而這裡我思考一件事,這個專案是要幫助客戶賺錢的,在沒有Digital Twin的搭配之下,貿然使用Reinforcement L
2024/05/25
上週發了一篇AI書單推薦 今天來談談,我是怎麼學習的,我總共學了七年AI,自然對於一個小白想入門有更深刻的體悟,更能了解怎麼樣學習才能不至於一次面臨太多困難而放棄 我的建議是這樣: 先花兩年把Machine Learning學完,當中會遇到很多數學問題,這方面可以「在遇到問題時」再去翻
2024/05/25
上週發了一篇AI書單推薦 今天來談談,我是怎麼學習的,我總共學了七年AI,自然對於一個小白想入門有更深刻的體悟,更能了解怎麼樣學習才能不至於一次面臨太多困難而放棄 我的建議是這樣: 先花兩年把Machine Learning學完,當中會遇到很多數學問題,這方面可以「在遇到問題時」再去翻
2024/05/18
這篇介紹我看過的AI書籍中,覺得很棒的書單,我按照不同的AI作法來分類: Machine Learning: Pattern Recognition and Machine Learning, Christopher M. Bishop, 2011 The Elements of Statis
2024/05/18
這篇介紹我看過的AI書籍中,覺得很棒的書單,我按照不同的AI作法來分類: Machine Learning: Pattern Recognition and Machine Learning, Christopher M. Bishop, 2011 The Elements of Statis
看更多
你可能也想看
Thumbnail
vocus 慶祝推出 App,舉辦 2026 全站慶。推出精選內容與數位商品折扣,訂單免費與紅包抽獎、新註冊會員專屬活動、Boba Boost 贊助抽紅包,以及全站徵文,並邀請你一起來回顧過去的一年, vocus 與創作者共同留下了哪些精彩創作。
Thumbnail
vocus 慶祝推出 App,舉辦 2026 全站慶。推出精選內容與數位商品折扣,訂單免費與紅包抽獎、新註冊會員專屬活動、Boba Boost 贊助抽紅包,以及全站徵文,並邀請你一起來回顧過去的一年, vocus 與創作者共同留下了哪些精彩創作。
Thumbnail
別讓你的房子,變成家中最大的「閒置資產」 作為一名服務高淨值客戶的私人銀行顧問,我每天的任務只有一個:幫客戶「讓錢滾動」。然而,當我觀察身旁許多同樣育有子女的朋友們,即便他們多半已是職場上的中高階主管,表面上看似光鮮亮麗,有房有車;但實際上,大家都是典型的「夾心世代」。每個月薪水一入帳,扣掉沉重的
Thumbnail
別讓你的房子,變成家中最大的「閒置資產」 作為一名服務高淨值客戶的私人銀行顧問,我每天的任務只有一個:幫客戶「讓錢滾動」。然而,當我觀察身旁許多同樣育有子女的朋友們,即便他們多半已是職場上的中高階主管,表面上看似光鮮亮麗,有房有車;但實際上,大家都是典型的「夾心世代」。每個月薪水一入帳,扣掉沉重的
Thumbnail
本文介紹了人工智慧(AI)及機器學習(ML)的基本概念和關係,探討了數據在機器學習中的重要性,以及深度學習和生成式人工智慧的應用。
Thumbnail
本文介紹了人工智慧(AI)及機器學習(ML)的基本概念和關係,探討了數據在機器學習中的重要性,以及深度學習和生成式人工智慧的應用。
Thumbnail
本文要探討AI的任務與實戰場景。AI技術已深入生活各層面,從違約預測到都市交通管理。AI任務主要有三類:數值型資料處理、自然語言處理(NLP)和電腦影像辨識。時間序列資料和強化學習方法(如AlphaGo)也引起廣泛關注。AI演算法和方法因應不同學派和技術發展而多樣化,了解這些基礎有助選擇適合研究方向
Thumbnail
本文要探討AI的任務與實戰場景。AI技術已深入生活各層面,從違約預測到都市交通管理。AI任務主要有三類:數值型資料處理、自然語言處理(NLP)和電腦影像辨識。時間序列資料和強化學習方法(如AlphaGo)也引起廣泛關注。AI演算法和方法因應不同學派和技術發展而多樣化,了解這些基礎有助選擇適合研究方向
Thumbnail
科技發達,AI智能也越來越發達。 蠢孩子,我每篇小說的圖片都是用AI製作的唷!!
Thumbnail
科技發達,AI智能也越來越發達。 蠢孩子,我每篇小說的圖片都是用AI製作的唷!!
Thumbnail
最新的AI趨勢讓人眼花撩亂,不知要如何開始學習?本文介紹了作者對AI的使用和體驗,以及各類AI工具以及推薦的選擇。最後強調了AI是一個很好用的工具,可以幫助人們節省時間並提高效率。鼓勵人們保持好奇心,不停止學習,並提出了對健康生活和開心生活的祝福。
Thumbnail
最新的AI趨勢讓人眼花撩亂,不知要如何開始學習?本文介紹了作者對AI的使用和體驗,以及各類AI工具以及推薦的選擇。最後強調了AI是一個很好用的工具,可以幫助人們節省時間並提高效率。鼓勵人們保持好奇心,不停止學習,並提出了對健康生活和開心生活的祝福。
Thumbnail
這篇文章介紹瞭如何利用生成式AI(GenAI)來提高學習效率,包括文章重點整理、完善知識體系、客製化學習回饋、提供多元觀點等方法。同時提醒使用者應注意內容的信效度,保持學術誠信,適當運用GenAI能大幅提升工作效率。
Thumbnail
這篇文章介紹瞭如何利用生成式AI(GenAI)來提高學習效率,包括文章重點整理、完善知識體系、客製化學習回饋、提供多元觀點等方法。同時提醒使用者應注意內容的信效度,保持學術誠信,適當運用GenAI能大幅提升工作效率。
Thumbnail
數位化時代中,人工智能(AI)已成為推動創新和進步的關鍵力量。本文探討AI的現狀、挑戰以及未來可能性,並提出負責任地發展和使用AI的思考。
Thumbnail
數位化時代中,人工智能(AI)已成為推動創新和進步的關鍵力量。本文探討AI的現狀、挑戰以及未來可能性,並提出負責任地發展和使用AI的思考。
Thumbnail
未來,針對圖片生成的 prompt engineering 可能會越來越不重要。
Thumbnail
未來,針對圖片生成的 prompt engineering 可能會越來越不重要。
Thumbnail
2023年被世人稱做生成式AI世代的元年,各式各樣的AI工具不斷湧現,改變了人們的生活。本文將詳細介紹人工智慧和機器學習的相關知識,以及各種人工智慧和機器學習的實現方法。
Thumbnail
2023年被世人稱做生成式AI世代的元年,各式各樣的AI工具不斷湧現,改變了人們的生活。本文將詳細介紹人工智慧和機器學習的相關知識,以及各種人工智慧和機器學習的實現方法。
Thumbnail
在人工智慧(AI)領域中,生成式AI已經成為一個備受關注的分支,它不僅在創造性的工作中展現出強大的能力,還在各個領域中展現出潛在的應用價值。本文將從宏觀的角度出發,深入探討生成式AI的種類、概念、缺點、公司、訓練、發展趨勢以及原理,帶領讀者深入了解這個令人振奮的領域。
Thumbnail
在人工智慧(AI)領域中,生成式AI已經成為一個備受關注的分支,它不僅在創造性的工作中展現出強大的能力,還在各個領域中展現出潛在的應用價值。本文將從宏觀的角度出發,深入探討生成式AI的種類、概念、缺點、公司、訓練、發展趨勢以及原理,帶領讀者深入了解這個令人振奮的領域。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News