上古漢語的邏輯結構 030

更新於 2024/06/25閱讀時間約 2 分鐘

1.0 從函數到函算語法


raw-image


1.2 函數概念小史

1.2.1 中譯的來源

1.2.2 一個速度問題

1.2.3 幾何的方法

1.2.4 微積分的記法

 

有些讀者大概都知道,微積分學有兩個分科﹕一為微分學 (differential calculus),一為積分學 (integral calculus)﹔前者的主要運算是微分 (differentiation),後者的主要運算是積分 (integration) 。因此,我們說牛頓和萊布尼茲奠定了微積分學的基礎,就是上述的意思。

所謂「微分」,不外乎求取導數 (derivative)﹔而求取導數的過程就是微分。

放在笛卡兒平面 (Cartesian plane) 上,所謂的「導數」就是尋找曲線上某點的觸線 (tangent)30﹔再簡單一點來說,就是若要尋求曲線 (非直線) 上某點的傾斜度或變動率,我們可把這點無限放大,使成一直線,那便可以使用「老式」的代數和幾何方法求得這一點的傾斜度。反過來,若要尋求一非規則平面的面積,我們基本上可用同一方法,把平面切割成眾多可用「老式」代數和幾何計算的面積,在將這些面積加在一起便成該不規則平面的面績。這是微分的逆反,也就是積分。積分就是微分的逆運算。

在這裡,我們關注的微分學就是計算某量因應另一量的極小變動而產生的極小變動。牛頓最早於1665年在一個「x」的上方加一點來表示這個關係,並且稱

raw-image

為「x 的流數」,而將「x」稱為「流子」(fluent)。1704年,牛頓寫了一篇題為「de Quadratura curvarum」(曲線的求積法) 的文章,解釋他使用的符號。除了

raw-image

之外,他還用了

raw-image

等符號,意思是

raw-image

的流數﹑

raw-image

的流數﹑

raw-image


的流數,如此類推。其實

raw-image

的導數。牛頓的記法系統有這樣的安排﹕

raw-image

右向是導數,左向是積分。因此

raw-image

的導數﹑

raw-image

的導數,如此類推﹔反過來,

raw-image

的積分﹑

raw-image

的積分,如此類推。當然,牛頓的

raw-image

一貫地是個時間導數。所謂

raw-image

是指

raw-image

除了引進「流數」和「流子」,在另一個場合,他還用了一個拉丁名詞「quantitas genita」,即生成量的意思。如果流子是自變元,生成量便是應變元。對牛頓來說,算出某流數的一系列流子就是微分。毫無疑問,牛頓的流數因應流子的變動而變動,這便很有現代函數的輪廓了。

問題卻在於他的記法沒有賦予應變元一個符號或位置,結果便沒有明確自變元與應變元兩者間的關係。

__________

30 中文數學界將「tangent」翻作「切線」,事實上,  並不切入平面曲線,嚴格地說,僅僅與給定的曲線有一點的碰觸,與曲線成切割關係的,英語稱「secant」,中譯變成「割線」。其實「切」﹑「割」同義,將「tangent」翻作「切線」不單不準確,兼且令學生困惑,因此我在這裡將「tangent」翻譯為「觸線」。

待續

avatar-img
6會員
316內容數
我們這裡談兩個東西: 哲學和邏輯,以及與哲學和邏輯相關的東西。 首先開設的房間是《綁架愛麗絲 之 地下邏輯》。 隨後將陸續開設《綁架愛麗絲 之 鏡像語言》和《上古漢語的邏輯結構》。 聯絡作者﹕sen.wong@protonmail.com
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
sen的沙龍 的其他內容
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法  二 前面說過,牛頓關心的不是抽象的數學問題,他要解決的是天體運動的問題。他知道,假如他擁有該天體在任何一刻的瞬速數據,他便能夠從質量
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 一 踏入公元十七世紀,微積分逐漸成形,而主要的貢獻來自德國數學家及哲學家萊布尼茲和英國數學家及物理學家牛頓。27 但兩人發展微
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 二 這一百廿一頁其實只是第一版的一個附錄,名為「幾何學」。除了坐標系統的引進,笛卡兒明顯地結合了幾何和代數的語言。事實上,所謂「解析幾何」就是用代數方法表述被
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 一 因此打從輪廓的浮現,萌牙狀態的函數概念是一個幾何圖象。 有趣的是,兩個世紀之後,即公元十六世紀,歐洲文藝復興如日中天,法國數學家及哲學家勒內‧笛卡兒承襲
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 函數是數學分析的一大基石,所以從巴比倫﹑古印度﹑古中國到古希臘的數學文獻都有函數的影子,雖然函數概念還不備可供鑒辨的輪廓,其中一個原因是數學的語言還沒有成熟。文字的描述或簡單的算術圖表很
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 數學中函數概念的重要性難以盡書,亦很難想像沒有函數概念的數學可以走多遠。誇張一點,我們可以說很大部份的數學都是按函數概念操作的。但少有人留意到,在某個意義上,函數可說是數學語言的一個語構處理。 漢語「函數」一詞乃
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法  二 前面說過,牛頓關心的不是抽象的數學問題,他要解決的是天體運動的問題。他知道,假如他擁有該天體在任何一刻的瞬速數據,他便能夠從質量
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 一 踏入公元十七世紀,微積分逐漸成形,而主要的貢獻來自德國數學家及哲學家萊布尼茲和英國數學家及物理學家牛頓。27 但兩人發展微
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 二 這一百廿一頁其實只是第一版的一個附錄,名為「幾何學」。除了坐標系統的引進,笛卡兒明顯地結合了幾何和代數的語言。事實上,所謂「解析幾何」就是用代數方法表述被
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 一 因此打從輪廓的浮現,萌牙狀態的函數概念是一個幾何圖象。 有趣的是,兩個世紀之後,即公元十六世紀,歐洲文藝復興如日中天,法國數學家及哲學家勒內‧笛卡兒承襲
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 函數是數學分析的一大基石,所以從巴比倫﹑古印度﹑古中國到古希臘的數學文獻都有函數的影子,雖然函數概念還不備可供鑒辨的輪廓,其中一個原因是數學的語言還沒有成熟。文字的描述或簡單的算術圖表很
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 數學中函數概念的重要性難以盡書,亦很難想像沒有函數概念的數學可以走多遠。誇張一點,我們可以說很大部份的數學都是按函數概念操作的。但少有人留意到,在某個意義上,函數可說是數學語言的一個語構處理。 漢語「函數」一詞乃
你可能也想看
Google News 追蹤
Thumbnail
徵的就是你 🫵 超ㄅㄧㄤˋ 獎品搭配超瞎趴的四大主題,等你踹共啦!還有機會獲得經典的「偉士牌樂高」喔!馬上來參加本次的活動吧!
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
國中數學第三冊 第一單元 乘法公式與多項式 1-2 多項式與其加減 例題解說
Thumbnail
徵的就是你 🫵 超ㄅㄧㄤˋ 獎品搭配超瞎趴的四大主題,等你踹共啦!還有機會獲得經典的「偉士牌樂高」喔!馬上來參加本次的活動吧!
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
國中數學第三冊 第一單元 乘法公式與多項式 1-2 多項式與其加減 例題解說