C003|為什麼大語言模型的嵌入需要這麼多維度?

更新 發佈閱讀 2 分鐘

大語言模型通常會生產自己的「嵌入 Embedding」作為部分的輸入層,


並且在大語言模型的訓練途中不斷優化嵌入的方式,


以對特定的任務特定的數據優化。


而大語言模型使用的「嵌入維度 Embedding Dimension」通常是高維度的,


例如最小的GPT-2模型有1億1千7百萬(117M)個參數[1],嵌入維度是765維 。


最大的GPT-3模型有1千7百5時億 (175B)個參數[2],嵌入維度是12288維。


可見「符元 Token」的空間的大小,


是我們在傳統數學教育中考慮的空間的維度以外,


很神秘的世界。


而根據Open AI於2019年11月的報告[3],


GPT-2 是能生成連貫文本段落的大型非監督語言模型,


參數的大小,最少有1億2千4百萬(124 M),最大有15億 (1.5B)。


而根據Open AI的官方說明文件[4],


嵌入就是一個浮點數向量,


用來度量「字符串 Text Strings」之間的「相關性 Relatedness」。


而取得嵌入,主要透過 Embeddings API endpoint [5] ,


選取「嵌入模型 Embedding Model」的名稱,


進一步將文本資料嵌入成向量,


儲存到「向量資料庫 Vector Embedding」之中。



Reference

[1] https://huggingface.co/transformers/v2.2.0/pretrained_models.html

[2] https://en.wikipedia.org/wiki/GPT-3

[3] https://arxiv.org/pdf/1908.09203

[4] https://platform.openai.com/docs/guides/embeddings/what-are-embeddings

[5] https://platform.openai.com/docs/api-reference/embeddings/create

留言
avatar-img
留言分享你的想法!
avatar-img
王啟樺的沙龍
636會員
2.0K內容數
Outline as Content
王啟樺的沙龍的其他內容
2025/03/29
Passive Consumption(被動接收) vs. Active Reading(主動閱讀)|真正讓你進化的閱讀差在這裡 碩博士生每天都在讀論文、讀報告、讀教材, 但大多數人其實只是「看過了」,不是「讀進去了」。 讀很多卻吸收很少,記不起重點、寫不出心得, 不是你不夠努力,而是你還停
2025/03/29
Passive Consumption(被動接收) vs. Active Reading(主動閱讀)|真正讓你進化的閱讀差在這裡 碩博士生每天都在讀論文、讀報告、讀教材, 但大多數人其實只是「看過了」,不是「讀進去了」。 讀很多卻吸收很少,記不起重點、寫不出心得, 不是你不夠努力,而是你還停
2025/01/29
4 個關鍵洞見 + 讓你看懂中美 AI 競爭 + 若不讀,你就可能錯失整個時代的最大機遇 AI 的發展速度,真的快到讓人心驚。 我們常常以為美國在 AI 領域穩居頂尖,可現在中國的 AI 創新力好像開始迎頭趕上,這背後的原因是什麼? 若我們沒有跟上這波 AI 變革,就可能被遠遠拋在後面,錯失技
Thumbnail
2025/01/29
4 個關鍵洞見 + 讓你看懂中美 AI 競爭 + 若不讀,你就可能錯失整個時代的最大機遇 AI 的發展速度,真的快到讓人心驚。 我們常常以為美國在 AI 領域穩居頂尖,可現在中國的 AI 創新力好像開始迎頭趕上,這背後的原因是什麼? 若我們沒有跟上這波 AI 變革,就可能被遠遠拋在後面,錯失技
Thumbnail
看更多
你可能也想看
Thumbnail
在小小的租屋房間裡,透過蝦皮購物平臺採購各種黏土、模型、美甲材料等創作素材,打造專屬黏土小宇宙的療癒過程。文中分享多個蝦皮挖寶地圖,並推薦蝦皮分潤計畫。
Thumbnail
在小小的租屋房間裡,透過蝦皮購物平臺採購各種黏土、模型、美甲材料等創作素材,打造專屬黏土小宇宙的療癒過程。文中分享多個蝦皮挖寶地圖,並推薦蝦皮分潤計畫。
Thumbnail
小蝸和小豬因購物習慣不同常起衝突,直到發現蝦皮分潤計畫,讓小豬的購物愛好產生價值,也讓小蝸開始欣賞另一半的興趣。想增加收入或改善伴侶間的購物觀念差異?讓蝦皮分潤計畫成為你們的神隊友吧!
Thumbnail
小蝸和小豬因購物習慣不同常起衝突,直到發現蝦皮分潤計畫,讓小豬的購物愛好產生價值,也讓小蝸開始欣賞另一半的興趣。想增加收入或改善伴侶間的購物觀念差異?讓蝦皮分潤計畫成為你們的神隊友吧!
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 以下陳述任務 (Task)、模型 (Model)、微調 (Fine-Tuning)、GLUE (General Language Understanding Evalu
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 以下陳述任務 (Task)、模型 (Model)、微調 (Fine-Tuning)、GLUE (General Language Understanding Evalu
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 講完 Transformer 之 Encoder 架構中的 Embedding 與 Positional Encoding 部分,現在進入 Multi-Head Att
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 講完 Transformer 之 Encoder 架構中的 Embedding 與 Positional Encoding 部分,現在進入 Multi-Head Att
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 44說完 Embedding ,下一步就是闡述 Positional Embedding,其於原始 Transformer 架構中的角色
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 44說完 Embedding ,下一步就是闡述 Positional Embedding,其於原始 Transformer 架構中的角色
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 17中,介紹了大型語言模型 (LLM)世界裡面常用到的Token,現在我們來談談OpenAI的GPT模型如何利用Inference
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 17中,介紹了大型語言模型 (LLM)世界裡面常用到的Token,現在我們來談談OpenAI的GPT模型如何利用Inference
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 已經在AI說書 - 從0開始 - 12以及AI說書 - 從0開始 - 13中見識到TPU的威力了,現在我們把參數放大到真實大型語言模型的規模,看看運算時間的等級。
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 已經在AI說書 - 從0開始 - 12以及AI說書 - 從0開始 - 13中見識到TPU的威力了,現在我們把參數放大到真實大型語言模型的規模,看看運算時間的等級。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」。 Prompt Pattern 是給予LLM的指示,並確保生成的輸出擁有特定的品質(和數量)。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」。 Prompt Pattern 是給予LLM的指示,並確保生成的輸出擁有特定的品質(和數量)。
Thumbnail
大語言模型(LLMs)對於任何對人工智能和自然語言處理感興趣的人來說都是一個令人興奮的領域。 這類模型,如GPT-4, 透過其龐大的數據集和複雜的參數設置, 提供了前所未有的語言理解和生成能力。 那麼,究竟是什麼讓這些模型「大」得如此不同呢?
Thumbnail
大語言模型(LLMs)對於任何對人工智能和自然語言處理感興趣的人來說都是一個令人興奮的領域。 這類模型,如GPT-4, 透過其龐大的數據集和複雜的參數設置, 提供了前所未有的語言理解和生成能力。 那麼,究竟是什麼讓這些模型「大」得如此不同呢?
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News