AI說書 - 從0開始 - 161 | RoBERTa 模型背景

更新 發佈閱讀 1 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


  • BERT (Bidirectional Encoder Representations from Transformers) 模型是 Google 2018 年提出的模型,而 RoBERTa (Robustly Optimized BERT Pretraining Approach) 模型是 BERT 的進階版,由 Meta 於 2019 年提出
  • RoBERTa 不使用 WordPiece Tokenization,而是使用 Byte-Pair Encoding (BPE)
  • 本章節要介紹的模型是 KantaiBERT,是一種 BERT 模型的變形,是 RoBERTa 的縮小版,其使用 Masked Language Modeling (MLM) 做訓練,它的概念就是克漏字填空,詳如 AI說書 - 從0開始 - 130 所述
  • 我們使用的 KantaiBERT 模型有 83504416 個參數,包含 6 Layers 與 12 Heads (蒸餾版 BERT, DistilBERT),與當今大型語言模型相比,尺寸偏小,但好處是訓練過程可以加速看到成果,此外如果模型是要放在智慧型手機中,那麼蒸餾版就是一種考慮選項
留言
avatar-img
留言分享你的想法!
avatar-img
Learn AI 不 BI
237會員
820內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
Learn AI 不 BI的其他內容
2024/09/25
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從 AI說書 - 從0開始 - 159 | Pretain 模型緣起 到 AI說書 - 從0開始 - 189 | 製作聊天介面,我們完成書籍:Transformers
2024/09/25
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從 AI說書 - 從0開始 - 159 | Pretain 模型緣起 到 AI說書 - 從0開始 - 189 | 製作聊天介面,我們完成書籍:Transformers
2024/09/24
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 整理目前手上有的素材: AI說書 - 從0開始 - 180 | RoBERTa 預訓練前言:RoBERTa 預訓練前言 AI說書 - 從0開始 - 181 | 預訓
2024/09/24
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 整理目前手上有的素材: AI說書 - 從0開始 - 180 | RoBERTa 預訓練前言:RoBERTa 預訓練前言 AI說書 - 從0開始 - 181 | 預訓
2024/09/24
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 整理目前手上有的素材: AI說書 - 從0開始 - 180 | RoBERTa 預訓練前言:RoBERTa 預訓練前言 AI說書 - 從0開始 - 181 | 預訓
Thumbnail
2024/09/24
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 整理目前手上有的素材: AI說書 - 從0開始 - 180 | RoBERTa 預訓練前言:RoBERTa 預訓練前言 AI說書 - 從0開始 - 181 | 預訓
Thumbnail
看更多
你可能也想看
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 127 中提及: Transformer 的關鍵參數為: 原始 Transformer 模型中,左圖的 N = 6 原始 Tran
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 127 中提及: Transformer 的關鍵參數為: 原始 Transformer 模型中,左圖的 N = 6 原始 Tran
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 39 至 AI說書 - 從0開始 - 69 的第二章內容,我們拿 Encoder 出來看: 幾點注意如下: BERT 模型使用 M
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 39 至 AI說書 - 從0開始 - 69 的第二章內容,我們拿 Encoder 出來看: 幾點注意如下: BERT 模型使用 M
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在 AI說書 - 從0開始 - 114 建立了 Transformer 模型,並在 AI說書 - 從0開始 - 115 載入權重並執行 Tokenizing,現
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在 AI說書 - 從0開始 - 114 建立了 Transformer 模型,並在 AI說書 - 從0開始 - 115 載入權重並執行 Tokenizing,現
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在 AI說書 - 從0開始 - 114 建立了 Transformer 模型。 現在我們來載入預訓練權重,預訓練的權重包含 Transformer 的智慧
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在 AI說書 - 從0開始 - 114 建立了 Transformer 模型。 現在我們來載入預訓練權重,預訓練的權重包含 Transformer 的智慧
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 可以透過繼承預訓練模型 (Pretrained Model) 來微調 (Fine-Tune) 以執行下游任務。 Pretrained Mo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 可以透過繼承預訓練模型 (Pretrained Model) 來微調 (Fine-Tune) 以執行下游任務。 Pretrained Mo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformers for Natural Language Processing and Computer Vision, 2024 這本書中講 Trainin
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformers for Natural Language Processing and Computer Vision, 2024 這本書中講 Trainin
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 62 說:如果我參照原始 Google 釋出的 Transformer 論文的參數,在三個字的句子情況下,Single-Head At
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 62 說:如果我參照原始 Google 釋出的 Transformer 論文的參數,在三個字的句子情況下,Single-Head At
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News