斑斕多姿vs素面朝天:植物的海拔生存策略

更新於 發佈於 閱讀時間約 5 分鐘

絕大多數的植物是光合自營生物,因此必須進行光合作用(photosynthesis )以維持生命。光合作用的光反應(light reaction)是個電子傳遞鏈,藉由吸收光的能量激發葉綠素(chlorophyll )釋放電子,然後透過將電子在類囊體膜上傳遞,以取得電子的能量,以ATP(腺嘌呤核苷三磷酸)的形式儲存,供應植物進行卡爾文循環(Calvin cycle)以及其他反應所需。


雖說植物需要光來進行光合作用,但是過多的光也會造成傷害。在高光度的環境下,光合作用的電子傳遞鏈會呈現飽和狀態,這時候電子就可能會與細胞中的氧氣結合,產生自由基。自由基會氧化細胞中的各種分子,對植物造成嚴重的傷害。


因此,植物都會有多種保護自己不被曬傷的方法:如葉黃素(xanthophyll)、類胡蘿蔔素(carotenoids ),以及調整捕光複合體II(LHC II,light harvesting complex II)與光系統II的連結等。但是,有些植物還會發展出自己的一些小撇步。


生長在美國的兩種北美蛇根草屬植物(Hexastylis heterophyllaH. shuttleworthii),會有斑駁(variegated )的葉片。科學家注意到,它們葉片斑駁現象有隨海拔升高而降低的趨勢。低海拔地區(<450米)的植株有更多和更強的斑駁表現。


他們調查了兩年(2021-2022),2021年共調查了1622個個體,2022年調查了448個個體。總共涉及21個群落,其中15個為H. heterophylla,6個為H. shuttleworthii


他們發現,隨著海拔從約200米上升到1200米,它們從幾乎全部都是斑駁個體降低到幾乎全部都是均勻的綠色葉片的個體。同時,葉片的斑駁強度也從低海拔地區的一半斑駁降低到高海拔地區的接近0。


到底是什麼導致了這樣的現象呢?研究團隊調查了食草動物、溫度、UV-B輻射、季節性光照變化、土壤濕度和pH值等。結果發現,葉片的斑駁與食草動物並未顯示顯著相關性,反而跟溫度、UV-B輻射、季節性光照變化、土壤濕度和pH值等非生物因素呈現相關性。


難道斑駁的葉片不會影響食草動物的選擇嗎?研究團隊觀察到,這兩種植物主要的食草動物是蝸牛。由於蝸牛主要依靠觸角上的化學感受器尋找食物,而非視覺線索;所以蝸牛不太可能根據葉片是否斑駁來選擇食物。


那麼,到底哪一個因素是主要影響葉片的斑駁程度?研究團隊發現,斑駁葉片在強光下溫度較低,非光化學猝滅(NPQ)也低了20%。由於NPQ是植物用來處理過剩光能的一種機制,它透過將多餘的光能從葉綠素分子轉移到類胡蘿蔔素,接著類胡蘿蔔素再以熱的形式釋放這些能量,來保護光系統II因過度激發而受損。因此,高NPQ值表示植物正在積極地散失過剩光能也就是說,植物正在經歷光壓力。

   

因此,觀察到非斑駁葉片比斑駁葉片有更高的NPQ,意味着非斑駁葉片有更多的過剩光能要處理。因此,研究團隊認為,斑駁的葉片更可能是對非生物環境因素(如高溫、強光)的適應。


不過,葉片斑駁,會不會影響到光合作用的效率呢?研究團隊發現,儘管葉片的淺色部分葉綠素含量較低,但整體光合作用的效率(光合作用量子產率,Quantum Yield, Φ PSII)並沒有受到影響。這意味著,葉片斑駁可能是一種結構性適應,有助於植物在特定環境條件下維持光合作用的效率。


一般來說,我們會認為海拔越高,輻射應該會更強;但是,這兩種植物的數據顯示,似乎是低海拔地區輻射比較強!因為低海拔地區的植物們已經被逼到出現斑駁葉片,而高海拔地區的植物們卻還可以處理,儘管NPQ值高了20%。


但是,高海拔輻射較低?這不科學啊!不過,雖然他們並沒有直接在現場測量UV-B,但是他們使用了一個全球UV-B輻射數據庫,依據研究地點的空間坐標來從這個數據庫中找出從2004年到2013年的平均年度UV-B輻射數據。


數據庫的資料顯示,這個地區的UV-B隨著海拔的增加而減少,這與我們的一般認知相反。


這個結果確實令人困惑,會不會是全球數據庫無法準確反映局部地形的微氣候特徵?還是研究區域可能存在特殊的地理或大氣條件,影響了UV-B的分佈?或者是如雲量、植被覆蓋、空氣污染等可能影響UV-B的分佈,而這些因素可能與海拔有複雜的關係?又或者其他的因素(如:溫度)才是主因?


考慮到這篇論文的推論與一般認知的差異,這個發現值得進一步調查和驗證。未來的研究可能需要進行實地UV-B測量,以確認這種模式是否真的存在,還是由於數據或方法的限制導致的結果。


參考文獻:

Sullivan, C. N., & Koski, M. H. (2024). An elevational cline in leaf variegation: Testing anti‐herbivory and abiotic heterogeneity hypotheses in maintaining a polymorphism. American Journal of Botany, 111, e16411. https://doi.org/10.1002/ajb2.16411





留言
avatar-img
留言分享你的想法!
avatar-img
老葉報報
271會員
906內容數
主要介紹關於植物的新資訊,但是也會介紹一些其他的。 版主在大學教植物生理學,也教過生物化學。 如有推薦書籍需求,請e-mail:susanyeh816@gmail.com
老葉報報的其他內容
2025/05/01
上個月真的很熱鬧,不過我們還是要來看一下上個月最多人看的文章是哪幾篇? 這個月的第一名並不是植物科普,不過我個人覺得那個題目很有趣囉!
Thumbnail
2025/05/01
上個月真的很熱鬧,不過我們還是要來看一下上個月最多人看的文章是哪幾篇? 這個月的第一名並不是植物科普,不過我個人覺得那個題目很有趣囉!
Thumbnail
2025/04/30
年輕的時候,跟朋友一起去看《前進高棉》(Platoon)。當時是我第一次意識到越戰對美國人留下多麼深的傷痕。但是,當時的我並不知道,越戰在越南人民身上留下的傷痕,只怕不是三五十年去得掉的。 這個傷痕,來自於橙劑(Agent Orange)。 橙劑是什麼?用來做什麼?為什麼會造成傷害呢?來看看吧!
Thumbnail
2025/04/30
年輕的時候,跟朋友一起去看《前進高棉》(Platoon)。當時是我第一次意識到越戰對美國人留下多麼深的傷痕。但是,當時的我並不知道,越戰在越南人民身上留下的傷痕,只怕不是三五十年去得掉的。 這個傷痕,來自於橙劑(Agent Orange)。 橙劑是什麼?用來做什麼?為什麼會造成傷害呢?來看看吧!
Thumbnail
2025/04/29
大麥曾經是人類重要的糧食之一,雖然現在食用的人並不多,但依然是重要的動物飼料原料與釀造作物之一。因此,大麥的產量當然重要。 大麥的產量由它的花序,也就是我們熟悉的麥穗來決定。有趣的是,科學家發現大麥花序的形態,其實是由一套名叫CLAVATA訊息傳遞系統負責的喔!
Thumbnail
2025/04/29
大麥曾經是人類重要的糧食之一,雖然現在食用的人並不多,但依然是重要的動物飼料原料與釀造作物之一。因此,大麥的產量當然重要。 大麥的產量由它的花序,也就是我們熟悉的麥穗來決定。有趣的是,科學家發現大麥花序的形態,其實是由一套名叫CLAVATA訊息傳遞系統負責的喔!
Thumbnail
看更多
你可能也想看
Thumbnail
2025 vocus 推出最受矚目的活動之一——《開箱你的美好生活》,我們跟著創作者一起「開箱」各種故事、景點、餐廳、超值好物⋯⋯甚至那些讓人會心一笑的生活小廢物;這次活動不僅送出了許多獎勵,也反映了「內容有價」——創作不只是分享、紀錄,也能用各種不同形式變現、帶來實際收入。
Thumbnail
2025 vocus 推出最受矚目的活動之一——《開箱你的美好生活》,我們跟著創作者一起「開箱」各種故事、景點、餐廳、超值好物⋯⋯甚至那些讓人會心一笑的生活小廢物;這次活動不僅送出了許多獎勵,也反映了「內容有價」——創作不只是分享、紀錄,也能用各種不同形式變現、帶來實際收入。
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
過多的光能對植物是一種傷害,所以植物們會有一些小撇步,來處理這個問題喔!
Thumbnail
過多的光能對植物是一種傷害,所以植物們會有一些小撇步,來處理這個問題喔!
Thumbnail
對光合自營生物來說,沒有比準確的看到光更重要的事情了,所以植物不只是要看到有光沒光,還要看到光的強度、光的顏色,並根據這些資訊做出適當的反應。 也因此,植物有一整套的光受器來對不同波長的光作出反應。其中,對紫外光的反應,特別有趣。
Thumbnail
對光合自營生物來說,沒有比準確的看到光更重要的事情了,所以植物不只是要看到有光沒光,還要看到光的強度、光的顏色,並根據這些資訊做出適當的反應。 也因此,植物有一整套的光受器來對不同波長的光作出反應。其中,對紫外光的反應,特別有趣。
Thumbnail
植物需要氣孔(stoma)與外界的大氣進行交換才能取得足夠的二氧化碳與氧氣。另外,植物還需要進行蒸散作用來帶動導管(木質部xylem)裡的水分,才能運輸礦物質與糖。 但是,氣孔對植物的影響到底是怎麼樣的?最近的研究,有了一些有趣的發現。
Thumbnail
植物需要氣孔(stoma)與外界的大氣進行交換才能取得足夠的二氧化碳與氧氣。另外,植物還需要進行蒸散作用來帶動導管(木質部xylem)裡的水分,才能運輸礦物質與糖。 但是,氣孔對植物的影響到底是怎麼樣的?最近的研究,有了一些有趣的發現。
Thumbnail
對絕大部分的植物來說,進行光合作用是最重要的事,而要進行光合作用就需要葉綠體(chloroplast)。所以,葉綠體能不能正常發育,對植物非常重要。 過去的研究發現一個稱為GLK的轉錄因子(transcription factor),對葉綠體發育很重要。最近又發現了更多的重要基因喔!
Thumbnail
對絕大部分的植物來說,進行光合作用是最重要的事,而要進行光合作用就需要葉綠體(chloroplast)。所以,葉綠體能不能正常發育,對植物非常重要。 過去的研究發現一個稱為GLK的轉錄因子(transcription factor),對葉綠體發育很重要。最近又發現了更多的重要基因喔!
Thumbnail
植物能收到多少光,會影響到它們能進行多少光合作用,而葉片角度可以影響植物能收到多少光,所以葉片角度對植物產量的影響是相當大的。 通常葉片「站」得越直,收到的光就越少,產量就越低。而種得密了,葉片站得越直,當然產量就會下降。因此,科學家們一直在想要調整葉片角度,好讓農作物的產量上升。
Thumbnail
植物能收到多少光,會影響到它們能進行多少光合作用,而葉片角度可以影響植物能收到多少光,所以葉片角度對植物產量的影響是相當大的。 通常葉片「站」得越直,收到的光就越少,產量就越低。而種得密了,葉片站得越直,當然產量就會下降。因此,科學家們一直在想要調整葉片角度,好讓農作物的產量上升。
Thumbnail
這裡並不是要講一個植物與吸血鬼的故事! 過去知道光線對植物的影響大抵都是關於光的亮度、光的多少、光波的組成以及光週期。 這個研究發現暮光對植物的生長發育也很重要!
Thumbnail
這裡並不是要講一個植物與吸血鬼的故事! 過去知道光線對植物的影響大抵都是關於光的亮度、光的多少、光波的組成以及光週期。 這個研究發現暮光對植物的生長發育也很重要!
Thumbnail
陽台上不知名,卻常見的小草,如果在以前,肯定被當成雜草拔除,不但不需要照顧,拔除之後還會一直長,是野火燒不盡,春風吹又生的類型。而有些嬌弱的植物,即使細心呵護,也不知為何總是水土不服,無法存活太久。 果然,我的陽台是適者生存的試煉埸(笑)。 今天佇足陽台,想拍點什麼植物,在植物尚未甦醒的,我
Thumbnail
陽台上不知名,卻常見的小草,如果在以前,肯定被當成雜草拔除,不但不需要照顧,拔除之後還會一直長,是野火燒不盡,春風吹又生的類型。而有些嬌弱的植物,即使細心呵護,也不知為何總是水土不服,無法存活太久。 果然,我的陽台是適者生存的試煉埸(笑)。 今天佇足陽台,想拍點什麼植物,在植物尚未甦醒的,我
Thumbnail
本文章是作者整理有關Haworthia的種植知識技巧書籍、網址及個人種植經驗,內容涵蓋光照、通風、施肥等相關知識。
Thumbnail
本文章是作者整理有關Haworthia的種植知識技巧書籍、網址及個人種植經驗,內容涵蓋光照、通風、施肥等相關知識。
Thumbnail
炙熱火烤般的陽光令人畏懼,減少在火熱陽光下移動。 不得不在外行走時,會發現因強烈光線加持,花兒開得特別美麗。 像向日葵。 煙火樹。 蒜香花。 紫薇花。 這...像花又像植物。 落地生根(學名:Kalanchoe pinnata)又稱葉生根、天燈籠、古仔燈、 大還魂
Thumbnail
炙熱火烤般的陽光令人畏懼,減少在火熱陽光下移動。 不得不在外行走時,會發現因強烈光線加持,花兒開得特別美麗。 像向日葵。 煙火樹。 蒜香花。 紫薇花。 這...像花又像植物。 落地生根(學名:Kalanchoe pinnata)又稱葉生根、天燈籠、古仔燈、 大還魂
Thumbnail
植物的宜人綠色外觀,是由於它們在500-600 nm範圍內的波長反射率所致,可能給人一種印象,即綠光在生物學中次要的。這種觀點在一定程度上仍然存在。但是,有充分的證據表明這些波長不僅被吸收,而且還驅動和調節植物的生理反應和解剖特徵。這篇評論詳細介紹了綠光波長在植物生物學中必不可少的現有證據。吸收綠光
Thumbnail
植物的宜人綠色外觀,是由於它們在500-600 nm範圍內的波長反射率所致,可能給人一種印象,即綠光在生物學中次要的。這種觀點在一定程度上仍然存在。但是,有充分的證據表明這些波長不僅被吸收,而且還驅動和調節植物的生理反應和解剖特徵。這篇評論詳細介紹了綠光波長在植物生物學中必不可少的現有證據。吸收綠光
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News