大學數位邏輯講義課程系列-邏輯化簡

更新於 發佈於 閱讀時間約 1 分鐘

前導

通常在設計數位邏輯電路時,為了簡化邏輯閘使用的數量與降低成本,需要將布林代數化簡,方法有很多,常用的化簡方法為代數演算法和卡諾圖法(更方便、快速)。

不過在介紹簡化的方法前,需要了解兩種度布林代數式表示法,分別為積之和(SOP)和和之積(POS)。

積項之和(SOP)

  • SOP 表示布林函數為「多個積項(AND)」的「相加(OR)」。其中,每個「積項」都是變數的「AND」運算。
  • 標準積項(SSOP),若一個積項中包含所有的輸入變數,則稱這個積項為標準積項最小項,例如:
raw-image

即為標準積項之和。

其中:

raw-image

兩個積項均包含所有輸入變數,為標準積項。

和項之積(POS)

  • 布林函數表示為多個「和項(OR 運算)」的「乘積(AND 運算)」,這種形式稱為 POS。

標準和項之積(SPOS),若一個和項中包含所有的輸入變數,則稱之為標準和項,又稱為最大項,例如:

raw-image

即為標準和項之積。


下表為三輸入變數的標準積項、標準和項與輸入變數項次的對照,其中最小項的符號為m,最大項的符號為M。

raw-image

SOP轉換成SSOP

將有欠缺變數的積項以X表示,以下示範:

raw-image

其中,X代表0或是1,不管是

raw-image

皆不影響電路的功能(輸出結果)。

因為原項:

raw-image

所以:

raw-image

我們可以將結果寫為標準積和的簡易式:

raw-image

POS轉換成SPOS

將有欠缺變數的和項以X表示,以下示範:

raw-image

等於:

raw-image

我們可以將結果寫為標準和積的簡易式:

raw-image

SSOP和SPOS的互換

以實例說明如下:

raw-image

上面真值表中,只看Y輸出為1的項,可以寫出標準積之和的簡易式:

raw-image

而只看Y輸出為0的項,可以寫出標準和之積的簡易式:

raw-image

由以上例子來看:

raw-image
  • 因此,兩者間的互換,只要填入各式沒有出現的數字即可。

本頻道持續更新中(內容涵蓋前端程式設計入門、大學必備程式設計入門、電子系專業課程入門、數學微積分題解)如果身旁有相關科系的學生,不妨推薦一下喔~

相信這裡會是家教或線上課程之外,高中、大學生系統性綜合學習的好選擇。

最後感謝您的觀看!

留言
avatar-img
留言分享你的想法!
avatar-img
電資鼠 - 您的學習好夥伴
9會員
213內容數
在當今數位時代,電資領域人才需求爆發式成長,不論是前端網頁設計、嵌入式開發、人工智慧、物聯網還是軟硬體整合,這些技術都在改變世界。而掌握 C/C++、Python、數位邏輯、電路學與嵌入式開發等大學電資領域的課程,正是進入這個高薪、高需求產業的關鍵!
2025/04/30
接續上回,本章節的目的為使用 JK 正反器來設計出下面狀態圖的電路結構(建議先看完上一章節的逐步推導解說會比較好理解本章節的內容喔~)。
Thumbnail
2025/04/30
接續上回,本章節的目的為使用 JK 正反器來設計出下面狀態圖的電路結構(建議先看完上一章節的逐步推導解說會比較好理解本章節的內容喔~)。
Thumbnail
2025/04/30
我們知道要設計一電路需要知道規格之定義,然後我們藉由構建狀態圖,就可以開始準備設計電路,本章節從 D正反器開始,完整詳述狀態機電路設計的過程,幫助讀者輕鬆入門複雜觀念,為未來更深入的研究打下堅實基礎。
Thumbnail
2025/04/30
我們知道要設計一電路需要知道規格之定義,然後我們藉由構建狀態圖,就可以開始準備設計電路,本章節從 D正反器開始,完整詳述狀態機電路設計的過程,幫助讀者輕鬆入門複雜觀念,為未來更深入的研究打下堅實基礎。
Thumbnail
2025/04/30
這篇文章探討了莫爾機和米利機的狀態圖、狀態表建立、化簡以及狀態編碼等議題。文中詳細說明瞭狀態圖的組成元素、狀態轉換的規則,以及如何將狀態圖轉換為狀態表。此外,文章也闡述了狀態化簡的方法,以減少邏輯閘和正反器的數量,降低電路成本。最後,文章說明瞭如何為狀態分配唯一的二進位編碼值,以方便電路設計。
Thumbnail
2025/04/30
這篇文章探討了莫爾機和米利機的狀態圖、狀態表建立、化簡以及狀態編碼等議題。文中詳細說明瞭狀態圖的組成元素、狀態轉換的規則,以及如何將狀態圖轉換為狀態表。此外,文章也闡述了狀態化簡的方法,以減少邏輯閘和正反器的數量,降低電路成本。最後,文章說明瞭如何為狀態分配唯一的二進位編碼值,以方便電路設計。
Thumbnail
看更多
你可能也想看
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
本章節將深入探討如何將複雜的布林代數式化簡為更精簡的邏輯表達,以降低電路複雜度、節省硬體資源並提升運算效率。邏輯化簡是數位邏輯設計中最實用且必備的技巧,能幫助你從繁瑣的真值表中提煉出最簡約的邏輯核心。
Thumbnail
本章節將深入探討如何將複雜的布林代數式化簡為更精簡的邏輯表達,以降低電路複雜度、節省硬體資源並提升運算效率。邏輯化簡是數位邏輯設計中最實用且必備的技巧,能幫助你從繁瑣的真值表中提煉出最簡約的邏輯核心。
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 1.4.2 函算語法與函數概念 三 弗雷格從語言結構的觀點出發,提出了函數可以被視為一個不完整的表式。如果我們將一個函數拆解為一個由一個函子及其 (一個或多個) 論元所組成的表式,那麼該函子便是一個有待滿足的
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 1.4.2 函算語法與函數概念 三 弗雷格從語言結構的觀點出發,提出了函數可以被視為一個不完整的表式。如果我們將一個函數拆解為一個由一個函子及其 (一個或多個) 論元所組成的表式,那麼該函子便是一個有待滿足的
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 1.4.2 函算語法與函數概念 二 關於函數的演變和弗雷格對函數的看法,前面的 1.2 節和 1.3 節已經談論了不少。 由於函數在數學﹑邏輯學﹑計算語言學極為重要,更且是本書闡述的語法的中心概念,因此有必要再略作
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 1.4.2 函算語法與函數概念 二 關於函數的演變和弗雷格對函數的看法,前面的 1.2 節和 1.3 節已經談論了不少。 由於函數在數學﹑邏輯學﹑計算語言學極為重要,更且是本書闡述的語法的中心概念,因此有必要再略作
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 七 指派範疇是第一步, 第二步是設定推導規則。 推導規則的作用是對某一給定的表式63 進行判定,看它是否一個貫通的表式(或詞構)。就上述英語例句而言,我們只需一個簡單的單向通則 (general rule)﹕6
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 七 指派範疇是第一步, 第二步是設定推導規則。 推導規則的作用是對某一給定的表式63 進行判定,看它是否一個貫通的表式(或詞構)。就上述英語例句而言,我們只需一個簡單的單向通則 (general rule)﹕6
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 1.2 函數概念小史 1.3 弗雷格的函數概念 九 亞里士多德的語法觀點有其邏輯上的需要。他的詞項邏輯 (term logic)52 處理的都是屬於後人稱作「直言命題」的句式。 撇開量詞不談,直言命題可以簡化為一個基本句式﹕主語 + 謂語
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 1.2 函數概念小史 1.3 弗雷格的函數概念 九 亞里士多德的語法觀點有其邏輯上的需要。他的詞項邏輯 (term logic)52 處理的都是屬於後人稱作「直言命題」的句式。 撇開量詞不談,直言命題可以簡化為一個基本句式﹕主語 + 謂語
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 1.2 函數概念小史 1.3 弗雷格的函數概念 七 「概念」很可能是歐洲哲學史中最常用的其中一個語詞,就好像數學工作者的「數」,但概念總是作為一種心智建構提出或使用,對弗雷格要創建的新邏輯 —— 即以客存事物為對象的新邏輯 —— 來說,它可以
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 1.2 函數概念小史 1.3 弗雷格的函數概念 七 「概念」很可能是歐洲哲學史中最常用的其中一個語詞,就好像數學工作者的「數」,但概念總是作為一種心智建構提出或使用,對弗雷格要創建的新邏輯 —— 即以客存事物為對象的新邏輯 —— 來說,它可以
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 三 必須說一下波希米亞數學家/邏輯學家/哲學家/神學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 三 必須說一下波希米亞數學家/邏輯學家/哲學家/神學
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News