欠擬合 (Underfitting)

更新於 發佈於 閱讀時間約 3 分鐘

欠擬合 (Underfitting) 是指在機器學習模型的訓練過程中,模型沒有充分學習到訓練數據中的規律和模式,導致在訓練集和測試集上的表現都不夠理想的現象。簡單來說,模型過於簡單,無法捕捉到數據之間的複雜關係。

為什麼會發生欠擬合?

欠擬合通常在以下情況下更容易發生:

  • 模型複雜度過低: 模型過於簡單,例如使用一個線性模型來擬合非線性數據,模型沒有足夠的容量來學習數據中的複雜模式。
  • 特徵選擇不當: 輸入模型的特徵可能與預測目標的相關性不高,或者遺漏了重要的特徵,導致模型無法獲得足夠的信息來做出準確的預測。
  • 訓練時間不足: 模型可能沒有經過足夠的訓練迭代次數,還沒有充分學習到數據中的模式。
  • 正則化過強: 過度使用正則化技術(例如,過大的 L1 或 L2 正則化係數)可能會限制模型的學習能力,導致欠擬合。

欠擬合的表現:

  • 在訓練集上表現不佳: 模型在訓練集上的準確率、精確度等指標就比較低,無法很好地擬合訓練數據。
  • 在測試集或驗證集上表現也不佳: 模型在新數據上的性能同樣很差,通常與在訓練集上的表現接近,但都未達到理想水平。
  • 模型無法捕捉到數據中的主要趨勢和模式: 模型的預測結果與真實值之間存在較大的偏差。

欠擬合的後果:

欠擬合的模型無法很好地理解數據,因此在訓練數據和新數據上的表現都很差,無法用於有效的預測或分類。

如何解決欠擬合?

解決欠擬合通常需要以下方法:

  • 增加模型複雜度: 選擇更複雜的模型架構,例如使用更深的神經網路、增加多項式特徵、使用集成學習方法等,讓模型有足夠的容量來學習數據中的複雜模式。
  • 進行有效的特徵工程: 仔細分析數據,選擇與預測目標更相關的特徵,或者創建新的、更有意義的特徵來提供更多的信息給模型。
  • 增加訓練時間: 讓模型進行更多的訓練迭代,使其有更充足的時間學習數據中的模式。
  • 減弱正則化: 如果使用了正則化,可以適當減小正則化係數,允許模型更自由地學習。
  • 嘗試不同的模型: 考慮使用其他類型的機器學習模型,例如從線性模型切換到非線性模型。

總結:

欠擬合是模型學習能力不足的表現。與過擬合相反,欠擬合的模型無法捕捉到數據中的有效信息,導致在訓練集和測試集上的性能都比較差。解決欠擬合的關鍵是提高模型的複雜度和學習能力,並提供更豐富、更相關的特徵。

留言
avatar-img
留言分享你的想法!
avatar-img
郝信華 iPAS AI應用規劃師 學習筆記
17會員
461內容數
現職 : 富邦建設資訊副理 證照:經濟部 iPAS AI應用規劃師 AWS Certified AI Practitioner (AIF-C01)
2025/05/27
分割任務評估指標是用於衡量圖像分割模型性能的各種量化指標。圖像分割的目標是將圖像中的每個像素分配到一個特定的類別,因此評估指標需要能夠反映模型在像素級別的分類準確性以及分割區域的質量。 以下是一些主要的分割任務評估指標: 1. 像素準確率 (Pixel Accuracy, PA): 像素準確率
2025/05/27
分割任務評估指標是用於衡量圖像分割模型性能的各種量化指標。圖像分割的目標是將圖像中的每個像素分配到一個特定的類別,因此評估指標需要能夠反映模型在像素級別的分類準確性以及分割區域的質量。 以下是一些主要的分割任務評估指標: 1. 像素準確率 (Pixel Accuracy, PA): 像素準確率
2025/05/27
超參數調優 (Hyperparameter Tuning) 是機器學習中一個至關重要的步驟,它指的是選擇模型訓練過程中不會被模型自身學習到的、需要人工設定的參數(稱為超參數)的過程,以獲得最佳的模型性能。 什麼是超參數? 超參數是在訓練模型之前設定的,它們控制著模型的學習過程和最終的結構。與模型
2025/05/27
超參數調優 (Hyperparameter Tuning) 是機器學習中一個至關重要的步驟,它指的是選擇模型訓練過程中不會被模型自身學習到的、需要人工設定的參數(稱為超參數)的過程,以獲得最佳的模型性能。 什麼是超參數? 超參數是在訓練模型之前設定的,它們控制著模型的學習過程和最終的結構。與模型
2025/05/27
模型部署 (Model Deployment) 是指將已經訓練好的機器學習模型集成到一個實際應用環境中,使其能夠接收輸入數據並產生預測結果的過程。模型部署的方式多種多樣,取決於應用場景、性能需求、成本考量以及目標用戶等因素。 以下是一些常見的模型部署方式: 1. 本地部署 (Local Depl
2025/05/27
模型部署 (Model Deployment) 是指將已經訓練好的機器學習模型集成到一個實際應用環境中,使其能夠接收輸入數據並產生預測結果的過程。模型部署的方式多種多樣,取決於應用場景、性能需求、成本考量以及目標用戶等因素。 以下是一些常見的模型部署方式: 1. 本地部署 (Local Depl
看更多
你可能也想看
Thumbnail
2025 vocus 推出最受矚目的活動之一——《開箱你的美好生活》,我們跟著創作者一起「開箱」各種故事、景點、餐廳、超值好物⋯⋯甚至那些讓人會心一笑的生活小廢物;這次活動不僅送出了許多獎勵,也反映了「內容有價」——創作不只是分享、紀錄,也能用各種不同形式變現、帶來實際收入。
Thumbnail
2025 vocus 推出最受矚目的活動之一——《開箱你的美好生活》,我們跟著創作者一起「開箱」各種故事、景點、餐廳、超值好物⋯⋯甚至那些讓人會心一笑的生活小廢物;這次活動不僅送出了許多獎勵,也反映了「內容有價」——創作不只是分享、紀錄,也能用各種不同形式變現、帶來實際收入。
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
AI生成圖片是一個挑戰性的任務,雖然AI能理解文字需求,但仍無法完全想像心中的理想畫面。使用中文描述AI的生成效果約為5成到6成,而加入擬人化的描述可以讓AI更好地理解需求。無論如何,AI生成圖片仍面臨許多挑戰,需要更多的研究與嘗試。
Thumbnail
AI生成圖片是一個挑戰性的任務,雖然AI能理解文字需求,但仍無法完全想像心中的理想畫面。使用中文描述AI的生成效果約為5成到6成,而加入擬人化的描述可以讓AI更好地理解需求。無論如何,AI生成圖片仍面臨許多挑戰,需要更多的研究與嘗試。
Thumbnail
本文將延續上一篇文章,經由訓練好的GAN模型中的生成器來生成圖片 [深度學習][Python]訓練MLP的GAN模型來生成圖片_訓練篇 [深度學習][Python]訓練CNN的GAN模型來生成圖片_訓練篇 相較之下CNN的GAN生成的效果比較好,但模型也相對比較複雜,訓練時間花的也比較
Thumbnail
本文將延續上一篇文章,經由訓練好的GAN模型中的生成器來生成圖片 [深度學習][Python]訓練MLP的GAN模型來生成圖片_訓練篇 [深度學習][Python]訓練CNN的GAN模型來生成圖片_訓練篇 相較之下CNN的GAN生成的效果比較好,但模型也相對比較複雜,訓練時間花的也比較
Thumbnail
本文討論了雖然人工智慧可以提供大量參考答案,但缺乏感知和直覺,無法主動發現不尋常的情況,因此仍需要人腦確認和解決問題的重要性。同時強調了發現奇怪之處、與人溝通、發現問題點、詢問AI並總結出答案的能力和實作的能力的重要性。
Thumbnail
本文討論了雖然人工智慧可以提供大量參考答案,但缺乏感知和直覺,無法主動發現不尋常的情況,因此仍需要人腦確認和解決問題的重要性。同時強調了發現奇怪之處、與人溝通、發現問題點、詢問AI並總結出答案的能力和實作的能力的重要性。
Thumbnail
不知道大家會不會有這種感覺,在使用現今的一些預訓練模型時,雖然好用,但是實際在場域部屬時總感覺殺雞焉用牛刀,實際使用下去後續又沒有時間讓你去優化它,只好將錯就錯反正能用的想法持續使用,現在有個不錯的方法讓你在一開始就可以用相對低廉的成本去優化這個模型,讓後續使用不再懊悔。
Thumbnail
不知道大家會不會有這種感覺,在使用現今的一些預訓練模型時,雖然好用,但是實際在場域部屬時總感覺殺雞焉用牛刀,實際使用下去後續又沒有時間讓你去優化它,只好將錯就錯反正能用的想法持續使用,現在有個不錯的方法讓你在一開始就可以用相對低廉的成本去優化這個模型,讓後續使用不再懊悔。
Thumbnail
筆記-曲博談AI模型.群聯-24.05.05 https://www.youtube.com/watch?v=JHE88hwx4b0&t=2034s *大型語言模型 三個步驟: 1.預訓練,訓練一次要用幾萬顆處理器、訓練時間要1個月,ChatGPT訓練一次的成本為1000萬美金。 2.微調(
Thumbnail
筆記-曲博談AI模型.群聯-24.05.05 https://www.youtube.com/watch?v=JHE88hwx4b0&t=2034s *大型語言模型 三個步驟: 1.預訓練,訓練一次要用幾萬顆處理器、訓練時間要1個月,ChatGPT訓練一次的成本為1000萬美金。 2.微調(
Thumbnail
近年來,生成式AI對市場帶來了巨大變革,然而,企業的AI專案卻面臨許多部署和失敗的問題。從MIT Sloan Management Review的研究中,我們發現數據科學家在尋找防止AI模型失敗的模式上面存在許多問題。本文提供了三個觀點,協助缺乏技術的高階主管針對辨識有效的AI模型和數據集提出方法。
Thumbnail
近年來,生成式AI對市場帶來了巨大變革,然而,企業的AI專案卻面臨許多部署和失敗的問題。從MIT Sloan Management Review的研究中,我們發現數據科學家在尋找防止AI模型失敗的模式上面存在許多問題。本文提供了三個觀點,協助缺乏技術的高階主管針對辨識有效的AI模型和數據集提出方法。
Thumbnail
本文探討使用人工智能寫作中文教材時可能遇到的語言錯誤。透過例子指出常見的語病,包括誤解詞語、詞類誤用、前文後理不通和累贅表述。建議使用者在檢查由AI生成的教材時,應特別注意可能出現的語言錯誤,以確保教材的品質和邏輯連貫性。
Thumbnail
本文探討使用人工智能寫作中文教材時可能遇到的語言錯誤。透過例子指出常見的語病,包括誤解詞語、詞類誤用、前文後理不通和累贅表述。建議使用者在檢查由AI生成的教材時,應特別注意可能出現的語言錯誤,以確保教材的品質和邏輯連貫性。
Thumbnail
紐約時報報導,OpenAI使用了自家的Whisper 轉錄 100 萬個小時的 YouTube 影片作為訓練模型資料。Meta正在討論即使被起訴,也要使用受版權保護的作品來作為模型訓練資料。幾大模型開發者目前都同樣遭遇了「優質訓練資料」不足的困近的困境,而必須走入灰色地帶來支持模型的開發。
Thumbnail
紐約時報報導,OpenAI使用了自家的Whisper 轉錄 100 萬個小時的 YouTube 影片作為訓練模型資料。Meta正在討論即使被起訴,也要使用受版權保護的作品來作為模型訓練資料。幾大模型開發者目前都同樣遭遇了「優質訓練資料」不足的困近的困境,而必須走入灰色地帶來支持模型的開發。
Thumbnail
這陣子使用AI模型,還有參考國內外一些喜歡玩語言模型的同好發文,一個很有趣的結論就是,有時候把大型語言模型(尤其ChatGPT)當作一個人來溝通,會得到比較好的結果,這的確是非常反直覺的,也就是說很多時候ChatGPT耍懶不肯工作的時候,你用加油打氣,或是情緒勒索的方法,確實是可以得到比較好的結果。
Thumbnail
這陣子使用AI模型,還有參考國內外一些喜歡玩語言模型的同好發文,一個很有趣的結論就是,有時候把大型語言模型(尤其ChatGPT)當作一個人來溝通,會得到比較好的結果,這的確是非常反直覺的,也就是說很多時候ChatGPT耍懶不肯工作的時候,你用加油打氣,或是情緒勒索的方法,確實是可以得到比較好的結果。
Thumbnail
延續上週提到的,「有哪些不訓練模型的情況下,能夠強化語言模型的能力」,這堂課接續介紹其中第 3、4 個方法
Thumbnail
延續上週提到的,「有哪些不訓練模型的情況下,能夠強化語言模型的能力」,這堂課接續介紹其中第 3、4 個方法
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News