付費限定

你知道什麼是數據分析嗎?

閱讀時間約 6 分鐘

Do you know what “Data Analytics” is?

當你以為成為數據分析師是高薪且入門容易的職業時,
你已經進入了學無止境的不歸路……
另外,大數據(Big data)的解釋就交給維基百科。
隨著數據領域人才的需求,近期耳熟能詳的詞彙,莫過於「大數據」、「資料分析」、「數據分析師」,Data Scientist 也被稱為二十一世紀最性感的職業之一。
可是很少人真正知道這塊領域的專業及應用,就連身為數據分析系的筆者,也是經常鑽研這個跨領域的專業和相關的線上課程,因此整理出了成為資料分析師必須擁有的三個關鍵技能,統計背景、程式設計、領域知識

1.統計背景(Statistical background):

你一定在思考「數據分析與統計」有任何關聯性嗎?
創作者正在準備中
請加入 Dodson的沙龍 了解最新動態!
你的見面禮 Premium 閱讀權限 只剩下0 小時 0
avatar-img
70會員
124內容數
• Data Analyst x Dcard 7000+ Creator • 分享 #個人品牌 |#AI工具| #Lifestyle
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
你可能也想看
Google News 追蹤
大數據分析技術概述 隨著數據量的迅速增長,傳統的數據分析方法已無法應對當前龐大、複雜的數據。大數據分析技術旨在通過先進的技術手段從海量數據中提取出有價值的信息,並將其應用於決策支持、業務洞察、預測分析等領域。以下是幾種關鍵的大數據分析技術。 1️⃣ 數據挖掘 (Data Mining) 數據
Thumbnail
數據分析與解讀 隨著數據的爆炸式增長,能夠分析、解讀和應用數據的能力變得至關重要。這包括熟悉數據分析工具和技術,如統計學、數據挖掘、機器學習等。然而,僅靠短時間的數據分析並不足以提供深入見解。 要熟悉數據分析工具和技術,如統計學、數據挖掘和機器學習,可以從以下幾個方面入手: 基礎知識的學習
Thumbnail
本文談及資料科學的領域與分工。首先是建造一個AI的研發流程,資料收集到 AI 模型訓練的過程,AI經歷這一切流程被創造出來並產生價值;再來本文也提及在這個領域中的各種腳色、資料工程師、數據庫工程師、資料科學家和資料分析師的各種介紹。並且強調跨領域合作的重要性。
Thumbnail
在這個網上共享信息時代,大數據已成為推動許多行業創新的核心力量。從提升客戶體驗到優化運營效率,大數據的應用範圍日益擴大。然而,隨著技術的快速發展,實施大數據項目也帶來了不少挑戰。本文將探討大數據技術的最新趨勢,分析其在不同行業中的實際應用,並討論實施過程中的主要挑戰。
Thumbnail
作為一名擁有多年經驗的數據分析師,我深知數據分析的重要性及其對企業決策的影響。然而,數據分析並不是在任何情況下都適用。今天我想跟你聊的事情是:在數據量不足或缺乏流程優化目的時,進行數據分析的局限性。
Thumbnail
數據分析是現代社會的核心技能,適用於各行各業。無論是在市場營銷、財務管理,還是產品開發中,數據分析都扮演著至關重要的角色。提升數據敏感度有助於提高分析的準確性和效率,使我們能夠迅速找到關鍵信息,進而做出明智的決策。本文將探討數據分析訓練方法,提供實用案例,幫助初學者快速掌握數據分析技術。
Thumbnail
迎向大數據時代,數理及統計技能已成為了求職市場上的熱門資產,無論是在數據分折、機器學習、深度學習、金融科技、統計建模等,數統人才都扮演著重要關鍵角色。由勞動部勞動力發展署北基宜花金馬分署、臺灣大學數學系、國科會科學推展中心數學組和1111人力銀行合作「數學統計系所徵才會」( https://even
轉職數據分析師是一項需要長期努力的過程。對於文組生來說,由於缺乏數學、統計、程式設計等方面的基礎,在轉職過程中往往會面臨更多的挑戰。因此,制定一個合理的學習計劃,對於提高轉職成功率至關重要。 以下是一些規劃轉職數據分析師學習進度表的建議: 第一步:確認你的優勢和劣勢 在開始學習之前,我們首先要
Thumbnail
這是文科轉職數據工程師系列的第一篇文章。 許多人會在轉職前上許多數據分析課程,該怎麼選擇比較適合自己,但又不會噴錢呢? 這篇文章要介紹這個轉職過程前的準備工作。
大數據分析技術概述 隨著數據量的迅速增長,傳統的數據分析方法已無法應對當前龐大、複雜的數據。大數據分析技術旨在通過先進的技術手段從海量數據中提取出有價值的信息,並將其應用於決策支持、業務洞察、預測分析等領域。以下是幾種關鍵的大數據分析技術。 1️⃣ 數據挖掘 (Data Mining) 數據
Thumbnail
數據分析與解讀 隨著數據的爆炸式增長,能夠分析、解讀和應用數據的能力變得至關重要。這包括熟悉數據分析工具和技術,如統計學、數據挖掘、機器學習等。然而,僅靠短時間的數據分析並不足以提供深入見解。 要熟悉數據分析工具和技術,如統計學、數據挖掘和機器學習,可以從以下幾個方面入手: 基礎知識的學習
Thumbnail
本文談及資料科學的領域與分工。首先是建造一個AI的研發流程,資料收集到 AI 模型訓練的過程,AI經歷這一切流程被創造出來並產生價值;再來本文也提及在這個領域中的各種腳色、資料工程師、數據庫工程師、資料科學家和資料分析師的各種介紹。並且強調跨領域合作的重要性。
Thumbnail
在這個網上共享信息時代,大數據已成為推動許多行業創新的核心力量。從提升客戶體驗到優化運營效率,大數據的應用範圍日益擴大。然而,隨著技術的快速發展,實施大數據項目也帶來了不少挑戰。本文將探討大數據技術的最新趨勢,分析其在不同行業中的實際應用,並討論實施過程中的主要挑戰。
Thumbnail
作為一名擁有多年經驗的數據分析師,我深知數據分析的重要性及其對企業決策的影響。然而,數據分析並不是在任何情況下都適用。今天我想跟你聊的事情是:在數據量不足或缺乏流程優化目的時,進行數據分析的局限性。
Thumbnail
數據分析是現代社會的核心技能,適用於各行各業。無論是在市場營銷、財務管理,還是產品開發中,數據分析都扮演著至關重要的角色。提升數據敏感度有助於提高分析的準確性和效率,使我們能夠迅速找到關鍵信息,進而做出明智的決策。本文將探討數據分析訓練方法,提供實用案例,幫助初學者快速掌握數據分析技術。
Thumbnail
迎向大數據時代,數理及統計技能已成為了求職市場上的熱門資產,無論是在數據分折、機器學習、深度學習、金融科技、統計建模等,數統人才都扮演著重要關鍵角色。由勞動部勞動力發展署北基宜花金馬分署、臺灣大學數學系、國科會科學推展中心數學組和1111人力銀行合作「數學統計系所徵才會」( https://even
轉職數據分析師是一項需要長期努力的過程。對於文組生來說,由於缺乏數學、統計、程式設計等方面的基礎,在轉職過程中往往會面臨更多的挑戰。因此,制定一個合理的學習計劃,對於提高轉職成功率至關重要。 以下是一些規劃轉職數據分析師學習進度表的建議: 第一步:確認你的優勢和劣勢 在開始學習之前,我們首先要
Thumbnail
這是文科轉職數據工程師系列的第一篇文章。 許多人會在轉職前上許多數據分析課程,該怎麼選擇比較適合自己,但又不會噴錢呢? 這篇文章要介紹這個轉職過程前的準備工作。