在本篇的考慮中,並沒有特意考慮賽局局數的問題,只是簡單的藉納許均衡的觀念,來將定價問題表示成一種原則上可以處理的賽局。然而賽局的複雜度隨著參與人數成指數成長,使得找出能以多項式複雜度來處理資料的方式顯得重要。只是關於複雜度的問題超出本篇的討論範圍,就先放著。相關文獻或許可以參考“The complexity of computing a Nash equilibrium”,其摘要如下:
We resolve the question of the complexity of Nash equilibrium by showing that the problem of computing a Nash equilibrium in a game with 4 or more players is complete for the complexity class PPAD. Our proof uses ideas from the recently-established equivalence between polynomial time solvability of normal form games and graphical games, establishing that these kinds of games can simulate a PPAD-complete class of Brouwer functions.