給曾經害怕數學、不知道學數學有什麼用的你--
學數學,讓你「多擁有一種靈魂」。
東京大學博士、加州理工學院理論物理學研究所所長大栗博司,
帶你用生活的眼光認識、理解重要數學概念,不再害怕數學,
更發現世界隱藏在數學背後的真實面貌。
學數學其實就像學一種新的語言,是一扇帶你進入未知世界的門。而這本數學書,就像一本實用的生活會話書,而非硬邦邦的文法課本,以輕鬆而深入淺出的筆法,讓我們體會數學的趣味與美──由最基本的算術、方程式、基本幾何、畢氏定理、機率等國高中數學,到大學的微積分,以及更進階的複數系統、群論,透過真實生活中的例子及歷史軼事,讓我們拋開對數學的刻板印象,真正認識數學的本質,進而能夠用數學這個「語言」與世界對話。
■ 為什麼美國政府會向大眾宣告「不建議女性每年接受乳癌篩檢」?
■ 「納皮爾常數」可以用來挑選戀人,現代天文學之父克卜勒甚至以它來挑選再婚對象!
■ 畢達哥拉斯的弟子發現了無法化為分數的數,卻因此惹來殺身之禍?
■ 不能理解「負數」概念別擔心,因為連帕斯卡、笛卡兒等偉大數學家也都沒辦法接受!
■ 如果少了質數,我們可能再也沒辦法網路購物?
■ 「對數函數」的發明,讓天文學家壽命延長了兩倍!
■ 古希臘人如何在西元前3世紀就知道「地球是圓的」,甚至算出地球的大小?
……
不論你過去是否討厭數學,本書將讓你看見它的本質,
以及它在歷史上及現代生活中扮演的角色,發現學習數學的意義及樂趣!
【國內數學專家、學者,共感推薦!】
李信昌(數學網站「昌爸工作坊」站長)
林福來(國立臺灣師範大學名譽教授、遠哲科學教育基金會董事長)
施信源(2019全國師鐸獎得主、新北市資訊與科技教育諮詢委員)
洪萬生(臺灣數學史教育學會理事長、國立臺灣師範大學數學系退休教授)
賴以威(國立臺灣師範大學電機系副教授、數感實驗室共同創辦人)
大栗博司希望透過書中的豐富內容啟發女兒與讀者明白「數學是為了將事物回歸到基本原理、盡可能正確地表現出事物樣貌而產生的語言。」使用數學的語言可以精準地描述自己的想法,展現自主思考的能力。伽利略認為:「自然寫在宇宙這本大書上,而這本書是用數學語言寫成的。」如今大家身處大數據資訊洪流裡,如何萃取當中的本質,建立模式,更需要依賴數學的語言。
──李信昌(數學網站「昌爸工作坊」站長)
在新課綱朝向真實世界與學科知識結合的素養教育中,現象與人類之間的溝通,更需要順暢的語言進行流動。透過本書風趣、真實的文字敘述,讓我們找到數學的視覺、聽覺與觸覺的新感受,跨越數學與生活的鴻溝,咀嚼思考所帶來的驚艷與感動!
──施信源(2019全國師鐸獎得主、新北市資訊與科技教育諮詢委員)
傑出物理學家大栗博司至少精通四種語言:日文、英文、物理,以及數學。不過,他透過本書內容精彩而手法獨到的敘事,最想與他女兒及讀者分享的,則莫過於數學語言。這是因為他認為:「數學是一種為了可以正確的表示事物本質而創造的語言,而這一點正是英語或日語無法達到的。」所以,「如果明白了數學這種語言,就能夠說出以前無法述說的話語、看清以前不曾見過的事物,思考以前不曾想過的問題。」
──洪萬生(臺灣數學史教育學會理事長、國立臺灣師範大學數學系退休教授)
作者簡介 大栗博司
加州理工學院Fred Kavli名譽教授、Walter Burke理論物理學研究所所長、亞斯本物理學中心(Aspen Center for Physics)理事長,東京大學Kavli數物聯合宇宙研究機構(IPMU)機構長。日本數學會會員,美國文理學院會員,日本文藝家學會會員。
1962年生,京都大學理學部畢業,東京大學理學博士。曾任東京大學助理、普林斯頓高等研究所研究員、芝加哥大學助理教授、京都大學助理教授、加州大學柏克萊分校教授。研究專業為基本粒子論。2008年獲得艾森巴德獎(美國數學學會)、高木lecture(日本數學學會),2009年獲得洪保德獎、仁科紀念獎,2012年獲得賽門斯研究獎,2016年獲中日文化賞,2018年獲漢堡理論物理學獎,2019年獲日本政府頒發文藝界最高榮譽紫綬褒章。
著有《重力是什麼》、《強的力與弱的力》、《大栗老師的超弦理論入門》(獲第30屆講談社科學出版獎)、《基本粒子論的風景》、《用漫畫學超弦理論》等。
譯者簡介 許淑真
國立台灣大學微生物學研究所畢業。研究領域為分子生物學、細胞生物學、癌症生物學。熱心推廣科普教育,希望能分享科學帶來的感動。
目錄
導 讀 一本用數學寫下的經典童話(賴以威)
前 言 送給女兒的數學課
第一話 利用不確定的資訊來判斷
序 O.J. 辛普森(O.J. Simpson)判決案辯護方教授的主張
1 首先來擲骰子吧
2 不會輸的必勝法
3 條件機率以及貝氏定理
4 接受乳癌診斷到底有沒有意義呢
5 從經驗中學習變成從數學學習
6 重大核能事故再次發生的機率
7 O.J. 辛普森有罪嗎?
第二話 回歸基本原理
序 為了創新所需要的能力
1 加法、乘法的三項規則
2 有了減法,然後發現了「零」
3 為什麼負負得正
4 只要有分數,什麼都能分割
5 假分數→帶分數→連分數
6 利用連分數來製作曆法
7 其實不想承認的無理數
8 二次方程式的華麗歷史
第三話 天文數字也不可怕
序 世界初次的原子彈核爆實驗與費米推定
1 大氣中的二氧化碳到底增加了多少呢
1.1 人類究竟消耗了多少能量呢
1.2 人類排放出了多少二氧化碳呢
2 出現天文數字也不可怕
3 讓天文學家的壽命延長兩倍的祕密武器
4 什麼樣的儲蓄方法能讓複利效果最大化呢?
5 銀行存款要幾年才會變成兩倍呢?
6 尋找自然法則中的對數
第四話 不可思議的質數
序 純粹數學之花
1 用「埃拉托斯特尼(Eratosthenes)篩法」尋找質數
2 質數有無限多個
3 質數的出現是有規律的
4 利用「巴斯卡三角形」判定質數
5 通過費馬測試就是質數?
6 守護通訊祕密的「公開金鑰密碼」是什麼?
7 「公開金鑰密碼」的鑰匙─歐拉定理
8 信用卡號碼的傳送與接收
第五話 無限世界與不完備定理
序 歡迎光臨「加州旅館」
1 「1=0.99999…」是無法認同的嗎?
2 阿基里斯追不上烏龜嗎
3 「現在,我正在說謊」
4 「不在場證明」是「反證法」
5 這就是哥德爾的不完備定理!
第六話 測量宇宙的樣貌
序 古希臘人要怎樣測量地球的大小呢
1 基本中的基本──三角形的性質
1.1 證明三角形內角和是180 度
1.2 一輩子也忘不了的「畢達哥拉斯定理」証明法
2 劃時代的想法「笛卡兒座標系」
3 6 維空間、9 維空間、甚至10 維空間
4 歐幾里德定理不成立的世界
5 僅僅只有平行線公理不成立的世界
6 不需從外面觀察就可以知道二維面形狀的「絕妙定理」
7 畫一個邊長100億光年的三角形
第七話 微積分從積分開始
序 阿基米德的信
1 為什麼「從積分開始」呢
2 說到底,面積到底要怎樣計算
3 什麼圖形都ok 的、「阿基米德逼近法」
4 積分究竟在算什麼呢
5 試著積分各式各樣的函數吧
6 飛行中的箭是靜止的嗎
7 微分是積分的逆算
8 指數函數的微分與積分
第八話 真實存在的「幻想的數」
序 幻想的朋友、幻想的數
1 不管怎樣都會出現「平方之後變成負數」
2 從一維的實數到二維的複數
3 複數的乘法是「回轉延伸」
4 利用乘法推導的「加法定理」
5 幾何問題,用方程式來解答!
6 連結三角函數與指數函數的歐拉公式
第九話 測量難度與美
序 伽羅瓦、20 年的生涯與不滅的功績
1 什麼是圖形的對稱性
2 「群」的發現
3 二次方程式「公式解」的祕密
4 三次方程式、為什麼有解
5 「方程式有解」究竟是怎樣一回事呢
6 五次方程式與正20 面體
7 伽羅瓦最後的信
8 算式的難度與形式的美
9 多擁有一種靈魂
後記