LLM 001|大語言模型如何革新傳統的自然語言處理任務?

閱讀時間約 1 分鐘

大語言模型,例如OpenAI提供的ChatGPT,是過去幾年發展的深度神經網路模型,開啟自然語言處理的新紀元。


大語言模型之前,傳統方法在歸類任務,例如垃圾郵件分類,手寫模式辨別等能寫出規則的任務上表現良好。然而解析詳細指示,脈絡分析,構造連貫與脈絡洽當的原創文本等需要複雜理解與推廣能力的任務上,傳統方法就沒辦法了。


實際上,傳統方法無法從一串關鍵字就寫一封郵件,但這個任務對現代的大語言模型是小菜一碟。


大語言模型有很好的能力去理解,生成,詮釋人類語言。


然而,當我們說語言模型「理解」,具體指的是語言模型能夠處理文本,並且產生通順,連貫,脈絡洽當的文本,而不代表他們有像人類一樣的意識或領悟。


大語言模型的能力,是由深度學習的進展而解鎖的。


大語言模型透過大量的文本數據訓練,能比傳統方法更好抓住人類語言的脈絡資訊以及微妙之處。


如此,大語言模型顯著改良的大量自然語言處理任務的表現,包含文本翻譯,情感分析,問答。


此外,大語言模型在各種自然語言處理任務都展現出相當的熟練度,是為特定任務設計的傳統自然語言模型無法企及的。


大語言模型的成功歸因於Transformer架構與大量的訓練數據,使其能夠「編碼」各種語言上的微妙,脈絡,以及表達模式。


透過Transfomer架構與大量數據訓練大語言模型的這個趨勢,從根本改變了自然語言處理這個領域。


大語言模型成為了理解人類語言,與人類語言互動的全能工具。


本書的主要目標,是透過程式碼一步一步在Transformer架構上,實踐項ChatGPT一樣的大語言模型,藉此來理解大語言模型。

412會員
1.5K內容數
Outline as Content
留言0
查看全部
發表第一個留言支持創作者!
你可能也想看
Google News 追蹤
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
美國總統大選只剩下三天, 我們觀察一整週民調與金融市場的變化(包含賭局), 到本週五下午3:00前為止, 誰是美國總統幾乎大概可以猜到60-70%的機率, 本篇文章就是以大選結局為主軸來討論近期甚至到未來四年美股可能的改變
Thumbnail
Faker昨天真的太扯了,中國主播王多多點評的話更是精妙,分享給各位 王多多的點評 「Faker是我們的處境,他是LPL永遠繞不開的一個人和話題,所以我們特別渴望在決賽跟他相遇,去直面我們的處境。 我們曾經稱他為最高的山,最長的河,以為山海就是盡頭,可是Faker用他28歲的年齡...
Thumbnail
前言 前幾篇分享了 IBM Watsonx.ai 平台,以及在平台上使用 LLM 完成客戶體驗分析、與LLM串連處理較複雜的問題。在這一篇中,我們想來嘗試使用檢索增強生成(RAG)的技術,RAG 通過整合外部數據來增強基礎模型的回答能力,這不僅能解決模型訓練數據的局限性問題,還可以提供更精準和相關
Thumbnail
前言 在先前的文章中,我們探討了 IBM Watsonx 在客戶滿意度分析中的應用。今天,我們將利用 Google 的兩款大型語言模型(LLM)— flan-ul2 和 flan-t5-xxl,展示它們如何串聯起來生成關於特定主題的隨機問題和回答。 在這篇文章中,將使用 SimpleSequen
Thumbnail
前言 在上一篇文章中,分享了第一次使用 IBM Watsonx 的經歷,以及我對 Prompt lab 功能的初步探索。繼續這個話題,本文將探討 Watsonx 平台對 Python SDK 的支持,以及實作幾個 LLM 的應用,這一特性為開發者提供了極大的便利,使得在此平台上進行開發和應用大型語
Thumbnail
ChatGPT 在去年十一月橫空出世,每個人都驚探於它的能力,AI 也從遙遠的科技成為很多人每天都在使用的工具,但是自從 AI 成為最熱門的話題之後,始終有一群人一直大聲疾呼,我們需要小心發展 AI,另一方面則要提防 AI 被壞人利用,在影片中,Andrej Karpathy 介紹了三種已知的安全漏
Thumbnail
前言 在這個迅速變化的技術世界裡,AI 已成為推動創新和效率的主要動力之一,最近很幸運得參加了IBM Watsonx 的 workshop,對我來說是一個很好的機會認識企業對於快速導入AI和整合AI應用的平台。IBM Watson 作為AI領域的先驅之一,長久以來一直在智慧型系統和認知計算方面處於
Thumbnail
雖然ChatGPT這種基於大型語言模型(LLM)的助手, 在大部分的場景都能滿足我們的需求, 但也並非完美, 在使用時仍需注意一些隱患。 以下是LLM的一些缺陷及需要注意的點。 弱弱的數學造成明顯錯誤 過份樂觀帶來錯誤資訊 相信常常使用ChatGPT的朋友應該都有發現到, 不論我們怎麼提問, Cha
Thumbnail
[進行中未完成] 1.簡介 本文旨在讓沒有計算機科學背景的人對ChatGPT和類似的人工智能系統 (如GPT-3、GPT-4、Bing Chat、Bard等)有一些了解。 ChatGPT是一種聊天機器人,是建立在大型語言模型之上的對話型人工智能。專業術語可能會讓人感到陌生,但此文將一一解釋這些概念。
Thumbnail
什麼是LLM? 根據Meta AI的文章提到,大型語言模型是具有超過 1,000 億個參數的自然語言處理(natural language processing,NLP)系統,經過大量文字訓練,能夠閱讀並回答問題或者生成新的文字。 同時LLM們,不一定只能去產新的文字,而是端看參數是什麼,如果參數的
請將思考集中於使命 請保持向前的思想,讓思想與神的光明和愛保持一致。 集中思考於你精神上的使命,集中你所期望的意識。 
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
美國總統大選只剩下三天, 我們觀察一整週民調與金融市場的變化(包含賭局), 到本週五下午3:00前為止, 誰是美國總統幾乎大概可以猜到60-70%的機率, 本篇文章就是以大選結局為主軸來討論近期甚至到未來四年美股可能的改變
Thumbnail
Faker昨天真的太扯了,中國主播王多多點評的話更是精妙,分享給各位 王多多的點評 「Faker是我們的處境,他是LPL永遠繞不開的一個人和話題,所以我們特別渴望在決賽跟他相遇,去直面我們的處境。 我們曾經稱他為最高的山,最長的河,以為山海就是盡頭,可是Faker用他28歲的年齡...
Thumbnail
前言 前幾篇分享了 IBM Watsonx.ai 平台,以及在平台上使用 LLM 完成客戶體驗分析、與LLM串連處理較複雜的問題。在這一篇中,我們想來嘗試使用檢索增強生成(RAG)的技術,RAG 通過整合外部數據來增強基礎模型的回答能力,這不僅能解決模型訓練數據的局限性問題,還可以提供更精準和相關
Thumbnail
前言 在先前的文章中,我們探討了 IBM Watsonx 在客戶滿意度分析中的應用。今天,我們將利用 Google 的兩款大型語言模型(LLM)— flan-ul2 和 flan-t5-xxl,展示它們如何串聯起來生成關於特定主題的隨機問題和回答。 在這篇文章中,將使用 SimpleSequen
Thumbnail
前言 在上一篇文章中,分享了第一次使用 IBM Watsonx 的經歷,以及我對 Prompt lab 功能的初步探索。繼續這個話題,本文將探討 Watsonx 平台對 Python SDK 的支持,以及實作幾個 LLM 的應用,這一特性為開發者提供了極大的便利,使得在此平台上進行開發和應用大型語
Thumbnail
ChatGPT 在去年十一月橫空出世,每個人都驚探於它的能力,AI 也從遙遠的科技成為很多人每天都在使用的工具,但是自從 AI 成為最熱門的話題之後,始終有一群人一直大聲疾呼,我們需要小心發展 AI,另一方面則要提防 AI 被壞人利用,在影片中,Andrej Karpathy 介紹了三種已知的安全漏
Thumbnail
前言 在這個迅速變化的技術世界裡,AI 已成為推動創新和效率的主要動力之一,最近很幸運得參加了IBM Watsonx 的 workshop,對我來說是一個很好的機會認識企業對於快速導入AI和整合AI應用的平台。IBM Watson 作為AI領域的先驅之一,長久以來一直在智慧型系統和認知計算方面處於
Thumbnail
雖然ChatGPT這種基於大型語言模型(LLM)的助手, 在大部分的場景都能滿足我們的需求, 但也並非完美, 在使用時仍需注意一些隱患。 以下是LLM的一些缺陷及需要注意的點。 弱弱的數學造成明顯錯誤 過份樂觀帶來錯誤資訊 相信常常使用ChatGPT的朋友應該都有發現到, 不論我們怎麼提問, Cha
Thumbnail
[進行中未完成] 1.簡介 本文旨在讓沒有計算機科學背景的人對ChatGPT和類似的人工智能系統 (如GPT-3、GPT-4、Bing Chat、Bard等)有一些了解。 ChatGPT是一種聊天機器人,是建立在大型語言模型之上的對話型人工智能。專業術語可能會讓人感到陌生,但此文將一一解釋這些概念。
Thumbnail
什麼是LLM? 根據Meta AI的文章提到,大型語言模型是具有超過 1,000 億個參數的自然語言處理(natural language processing,NLP)系統,經過大量文字訓練,能夠閱讀並回答問題或者生成新的文字。 同時LLM們,不一定只能去產新的文字,而是端看參數是什麼,如果參數的
請將思考集中於使命 請保持向前的思想,讓思想與神的光明和愛保持一致。 集中思考於你精神上的使命,集中你所期望的意識。