付費限定

AI論與談—把脈大型語言模型

更新於 發佈於 閱讀時間約 4 分鐘

ChatGPT於2022年底問世後,人們陷入興奮、緊張、恐懼的情緒。ChatGPT屬於大型語言模型,簡稱LLM(large language model)。LLM就是用非常多的參數建立的模型。因此儲存這個模型需要很大的儲存空間。運行這個模型需要非常好的運算平台。也會使用相當大量的記憶體空間。可想而知,能夠推出這類的模型需要相當大的成本。所以通常是科技巨頭主導或是在背後撐腰。例如:Google有Bert模型、meta開發llama模型。

使用這類LLM變成一種顯學。網路上各種教學影片、文章,都在教人如何透過chatGPT提高工作效能、提高生活品質。甚至提供外掛的程式、串接GPT的付費應用程式(AP

以行動支持創作者!付費即可解鎖
本篇內容共 1678 字、0 則留言,僅發佈於別鬧了,廢才先生你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
avatar-img
9會員
74內容數
把大象放進冰箱的步驟有三個。成為懶人的步驟永遠都沒有
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
李稞生 的沙龍 的其他內容
AI論與談是我在進行人工智慧開發時,頓悟出的人類智慧。有對人的反醒。也的對科技的省思。對於人類文明未來前景的預言。基本上我不是預言家。但,我深信文明是往「好」的方向前進。思考人類文明的好是什麼,推論未來必然發生的轉折點。例如:AIOT的最終形式為何?智慧家庭會具有怎樣的功能等。 這一系列建立在我過
我們因此會聽到百靈果、范淇斐,等網路節目檢討美國大選的論調,與文茜世界週報的陳文茜...等媒體,是一致的。就算他們對於中國的態度(坊間,在台灣這是了解一個人中心思想的主要脈絡)大為不同。而他們共同點是什麼呢?是的!他們都是知識份子,他們讀書,談論思想,...
AI論與談是我在進行人工智慧開發時,頓悟出的人類智慧。有對人的反醒。也的對科技的省思。對於人類文明未來前景的預言。基本上我不是預言家。但,我深信文明是往「好」的方向前進。思考人類文明的好是什麼,推論未來必然發生的轉折點。例如:AIOT的最終形式為何?智慧家庭會具有怎樣的功能等。 這一系列建立在我過
我們因此會聽到百靈果、范淇斐,等網路節目檢討美國大選的論調,與文茜世界週報的陳文茜...等媒體,是一致的。就算他們對於中國的態度(坊間,在台灣這是了解一個人中心思想的主要脈絡)大為不同。而他們共同點是什麼呢?是的!他們都是知識份子,他們讀書,談論思想,...
你可能也想看
Google News 追蹤
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 數百萬到萬億參數的 Transformer 模型,例如 ChatGPT 和 GPT-4,似乎是無法穿透的黑盒子,沒有人可以解釋,因此,許多開發人員和使用者在處理這些令人
Thumbnail
在現今科技日新月異的時代,像ChatGPT這樣的大語言模型(LLM)已經成為許多人日常生活和工作的輔助工具。然而,隨著這些技術的普及,對於它們的誤解也層出不窮,這使得一些使用者對這些工具的期待與實際效果脫節,最近在網路上看到兩個實際案例,藉此分享一下一般常見的誤解。
Thumbnail
在AI時代中,GPT技術正在改變我們的生活。然而,SLM(小型語言模型)也開始受到關注,具有更高的效率、更低的資源消耗和更快的響應速度。這篇文章將討論LLM和SLM的比較、SLM的應用場景以及未來的發展趨勢。
大語言模型,例如OpenAI提供的ChatGPT,是過去幾年發展的深度神經網路模型,開啟自然語言處理的新紀元。
30年後來看現在,或許會覺得,還好現在有AI,才讓人類進入真正的文明世紀。 GPT只是大型語言模型(LLM)的一種,大型語言模型只是人工智慧(AI)的一種,而人工智慧甚至可以說只是「量子技術」的一種。 AI除了用來聊天(就像一開始我們只是把電腦當打字機),最重要的功能是幫助我們更容易理解和運用量
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
Thumbnail
大型語言模型 (LLM) 在最近幾年取得了重大進展,並引起了人們對生成式AI將如何影響工作方式的廣泛重視。雖然 LLM 具有強大的文本生成、翻譯和理解能力,但它們對工作的影響仍然是一個複雜且充滿爭議的話題。 本文摘要自MIT 史隆管理評論,分析LLM 對工作帶來的影響。
Thumbnail
大型語言模型(LLM)是基於深度學習的自然語言處理模型,而多模態模型(LMM)能處理多種資料型態。這些模型將對未來帶來重大改變。LLM 專注於理解和生成自然語言,LMM 能夠處理跨模態的內容,並整合多種資料的能力,有望成為未來趨勢。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」。 Prompt Pattern 是給予LLM的指示,並確保生成的輸出擁有特定的品質(和數量)。
Thumbnail
大語言模型(LLMs)對於任何對人工智能和自然語言處理感興趣的人來說都是一個令人興奮的領域。 這類模型,如GPT-4, 透過其龐大的數據集和複雜的參數設置, 提供了前所未有的語言理解和生成能力。 那麼,究竟是什麼讓這些模型「大」得如此不同呢?
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 數百萬到萬億參數的 Transformer 模型,例如 ChatGPT 和 GPT-4,似乎是無法穿透的黑盒子,沒有人可以解釋,因此,許多開發人員和使用者在處理這些令人
Thumbnail
在現今科技日新月異的時代,像ChatGPT這樣的大語言模型(LLM)已經成為許多人日常生活和工作的輔助工具。然而,隨著這些技術的普及,對於它們的誤解也層出不窮,這使得一些使用者對這些工具的期待與實際效果脫節,最近在網路上看到兩個實際案例,藉此分享一下一般常見的誤解。
Thumbnail
在AI時代中,GPT技術正在改變我們的生活。然而,SLM(小型語言模型)也開始受到關注,具有更高的效率、更低的資源消耗和更快的響應速度。這篇文章將討論LLM和SLM的比較、SLM的應用場景以及未來的發展趨勢。
大語言模型,例如OpenAI提供的ChatGPT,是過去幾年發展的深度神經網路模型,開啟自然語言處理的新紀元。
30年後來看現在,或許會覺得,還好現在有AI,才讓人類進入真正的文明世紀。 GPT只是大型語言模型(LLM)的一種,大型語言模型只是人工智慧(AI)的一種,而人工智慧甚至可以說只是「量子技術」的一種。 AI除了用來聊天(就像一開始我們只是把電腦當打字機),最重要的功能是幫助我們更容易理解和運用量
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
Thumbnail
大型語言模型 (LLM) 在最近幾年取得了重大進展,並引起了人們對生成式AI將如何影響工作方式的廣泛重視。雖然 LLM 具有強大的文本生成、翻譯和理解能力,但它們對工作的影響仍然是一個複雜且充滿爭議的話題。 本文摘要自MIT 史隆管理評論,分析LLM 對工作帶來的影響。
Thumbnail
大型語言模型(LLM)是基於深度學習的自然語言處理模型,而多模態模型(LMM)能處理多種資料型態。這些模型將對未來帶來重大改變。LLM 專注於理解和生成自然語言,LMM 能夠處理跨模態的內容,並整合多種資料的能力,有望成為未來趨勢。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」。 Prompt Pattern 是給予LLM的指示,並確保生成的輸出擁有特定的品質(和數量)。
Thumbnail
大語言模型(LLMs)對於任何對人工智能和自然語言處理感興趣的人來說都是一個令人興奮的領域。 這類模型,如GPT-4, 透過其龐大的數據集和複雜的參數設置, 提供了前所未有的語言理解和生成能力。 那麼,究竟是什麼讓這些模型「大」得如此不同呢?