Probabilistic Graphical Model 1.4節

更新於 發佈於 閱讀時間約 5 分鐘

以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。

1.4 Historical Notes

這節闡述Probabilistic Graphical Model的崛起歷史,當中尚做了一些關鍵書籍的推薦。


為什麼我會深耕Probabilistic Graphical Model呢?明明AI有很多領域,例如當今最夯的Transformer就是一例,原因是當今的AI沒辦法做到Reasoning與Causality,只能做模仿,而做不了思考,而這些正是Probabilistic Graphical Model可以做到的,我認為這才是未來人工智慧的趨勢。


The widespread acceptance of probabilistic methods began in the late 1980s, driven forward by two major factors. The first was a series of seminal theoretical developments. The most influential among these was the development of the Bayesian network framework by Judea Pearl and his colleagues in a series of paper that culminated in Pearl’s highly influential textbook Probabilistic Reasoning in Intelligent Systems (Pearl 1988). In parallel, the key paper by S.L. Lauritzen and D.J. Spiegelhalter 1988 set forth the foundations for efficient reasoning using probabilistic graphical models. The second major factor was the construction of large-scale, highly successful expert systems based on this framework that avoided the unrealistically strong assumptions made by early probabilistic expert systems. The most visible of these applications was the Pathfinder expert system, constructed by Heckerman and colleagues (Heckerman et al. 1992; Heckerman and Nathwani 1992b), which used a Bayesian network for diagnosis of pathology samples.


At this time, although work on other approaches to uncertain reasoning continues, probabilistic methods in general, and probabilistic graphical models in particular, have gained almost universal acceptance in a wide range of communities. They are in common use in fields as diverse as medical diagnosis, fault diagnosis, analysis of genetic and genomic data, communication and coding, analysis of marketing data, speech recognition, natural language understanding, and many more. Several other books cover aspects of this growing area; examples include Pearl (1988); Lauritzen (1996); Jensen (1996); Castillo et al. (1997a); Jordan (1998); Cowell et al. (1999); Neapolitan (2003); Korb and Nicholson (2003). The Artificial Intelligence textbook of Russell and Norvig (2003) places this field within the broader endeavor of constructing an intelligent agent.

avatar-img
177會員
470內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Learn AI 不 BI 的其他內容
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 1.3 Overview and Roadmap 1.3.1 Overview of Chapters 延續上一篇Part 3講
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 1.3 Overview and Roadmap 1.3.1 Overview of Chapters 延續上一篇Part 2講
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 1.3 Overview and Roadmap 1.3.1 Overview of Chapters 延續上一篇Part 1講
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 1.3 Overview and Roadmap 1.3.1 Overview of Chapters We begin in
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 1.2 Structured Probabilistic Models 既然要融入Uncertainty和Probability
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 Introduction 1.1 Motivation 想要有一個智能體能接收輸入訊息,進而輸出對應動作甚至做Reasoning
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 1.3 Overview and Roadmap 1.3.1 Overview of Chapters 延續上一篇Part 3講
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 1.3 Overview and Roadmap 1.3.1 Overview of Chapters 延續上一篇Part 2講
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 1.3 Overview and Roadmap 1.3.1 Overview of Chapters 延續上一篇Part 1講
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 1.3 Overview and Roadmap 1.3.1 Overview of Chapters We begin in
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 1.2 Structured Probabilistic Models 既然要融入Uncertainty和Probability
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 Introduction 1.1 Motivation 想要有一個智能體能接收輸入訊息,進而輸出對應動作甚至做Reasoning
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
本文介紹了人工智慧(AI)及機器學習(ML)的基本概念和關係,探討了數據在機器學習中的重要性,以及深度學習和生成式人工智慧的應用。
在人工智能的發展歷程中,早期的研究主要側重於將解決問題的規則輸入計算機,試圖通過啟蒙運動理性的思路模擬人類的智能行為。然而,這條路逐漸變得艱難,因為規則過於繁多,無法應對複雜的情境和語境。在這個背景下,一些科學家轉向了神經網絡算法,試圖模擬人腦的感知能力。
大語言模型能夠生成文本,因此被認為是生成式人工智慧的一種形式。 人工智慧的學科任務,是製作機器,使其能執行需要人類智慧才能執行的任務,例如理解語言,便是模式,做出決策。 除了大語言模型,人工智慧也包含了深度學習以及機器學習。 機器學習的學科任務,是透過演算法來實踐AI。 特別
Thumbnail
一篇闡述未來 AI 發展及對人類的影響力的文章,內容包括 AI 的發展趨勢、NVIDIA 未來目標、地緣政治等議題,透過分析提供投資信心。
Thumbnail
數位化時代中,人工智能(AI)已成為推動創新和進步的關鍵力量。本文探討AI的現狀、挑戰以及未來可能性,並提出負責任地發展和使用AI的思考。
Thumbnail
人工智慧(AI)的未來展望 在當今這個科技日新月異的時代,人工智慧(AI)已成為推動創新和進步的重要力量。從自動駕駛汽車到精準醫療,AI的應用範圍不斷擴大,其潛力無限。然而,隨著AI技術的快速發展,我們也必須關注其對社會、經濟和倫理的影響。
Thumbnail
本文介紹了人工智慧的定義和發展,以及在醫療、金融、製造、交通、教育等領域的應用。探討了AI的優勢和挑戰,以及AI在未來社會中的角色。作者提出了對AI發展的個人觀點和建議,強調了謹慎發展AI並制定相關法律法規的重要性。
Thumbnail
2023年被世人稱做生成式AI世代的元年,各式各樣的AI工具不斷湧現,改變了人們的生活。本文將詳細介紹人工智慧和機器學習的相關知識,以及各種人工智慧和機器學習的實現方法。
近來AI繪圖以及如Chatgpt等可進行對話的AI進入到大眾視野,讓AI成為了熱門話題,網路媒體和論壇冒出許多相關的文章,足見AI之勢著實非同小可。
Thumbnail
在人工智慧(AI)領域中,生成式AI已經成為一個備受關注的分支,它不僅在創造性的工作中展現出強大的能力,還在各個領域中展現出潛在的應用價值。本文將從宏觀的角度出發,深入探討生成式AI的種類、概念、缺點、公司、訓練、發展趨勢以及原理,帶領讀者深入了解這個令人振奮的領域。
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
本文介紹了人工智慧(AI)及機器學習(ML)的基本概念和關係,探討了數據在機器學習中的重要性,以及深度學習和生成式人工智慧的應用。
在人工智能的發展歷程中,早期的研究主要側重於將解決問題的規則輸入計算機,試圖通過啟蒙運動理性的思路模擬人類的智能行為。然而,這條路逐漸變得艱難,因為規則過於繁多,無法應對複雜的情境和語境。在這個背景下,一些科學家轉向了神經網絡算法,試圖模擬人腦的感知能力。
大語言模型能夠生成文本,因此被認為是生成式人工智慧的一種形式。 人工智慧的學科任務,是製作機器,使其能執行需要人類智慧才能執行的任務,例如理解語言,便是模式,做出決策。 除了大語言模型,人工智慧也包含了深度學習以及機器學習。 機器學習的學科任務,是透過演算法來實踐AI。 特別
Thumbnail
一篇闡述未來 AI 發展及對人類的影響力的文章,內容包括 AI 的發展趨勢、NVIDIA 未來目標、地緣政治等議題,透過分析提供投資信心。
Thumbnail
數位化時代中,人工智能(AI)已成為推動創新和進步的關鍵力量。本文探討AI的現狀、挑戰以及未來可能性,並提出負責任地發展和使用AI的思考。
Thumbnail
人工智慧(AI)的未來展望 在當今這個科技日新月異的時代,人工智慧(AI)已成為推動創新和進步的重要力量。從自動駕駛汽車到精準醫療,AI的應用範圍不斷擴大,其潛力無限。然而,隨著AI技術的快速發展,我們也必須關注其對社會、經濟和倫理的影響。
Thumbnail
本文介紹了人工智慧的定義和發展,以及在醫療、金融、製造、交通、教育等領域的應用。探討了AI的優勢和挑戰,以及AI在未來社會中的角色。作者提出了對AI發展的個人觀點和建議,強調了謹慎發展AI並制定相關法律法規的重要性。
Thumbnail
2023年被世人稱做生成式AI世代的元年,各式各樣的AI工具不斷湧現,改變了人們的生活。本文將詳細介紹人工智慧和機器學習的相關知識,以及各種人工智慧和機器學習的實現方法。
近來AI繪圖以及如Chatgpt等可進行對話的AI進入到大眾視野,讓AI成為了熱門話題,網路媒體和論壇冒出許多相關的文章,足見AI之勢著實非同小可。
Thumbnail
在人工智慧(AI)領域中,生成式AI已經成為一個備受關注的分支,它不僅在創造性的工作中展現出強大的能力,還在各個領域中展現出潛在的應用價值。本文將從宏觀的角度出發,深入探討生成式AI的種類、概念、缺點、公司、訓練、發展趨勢以及原理,帶領讀者深入了解這個令人振奮的領域。