[深度學習]LSTM模型

閱讀時間約 3 分鐘

長短期記憶(英語:Long Short-Term Memory,LSTM)是一種時間循環神經網路(RNN),論文首次發表於1997年

LSTM(長短期記憶)是一種特定類型的遞歸神經網絡(RNN),在許多需要處理時間序列數據或順序數據的應用中非常有用。


以下是一些常見的 LSTM 應用:

  1. 語音識別:LSTM 可以用於將語音信號轉換為文本。例如,語音助手和語音轉文字服務都使用 LSTM 網絡來處理語音數據。
  2. 語言建模和文本生成:LSTM 可以預測文本序列中的下一個單詞或字符,用於自動生成文本,如編寫文章、生成對話和寫詩等。
  3. 機器翻譯:LSTM 在翻譯系統中廣泛使用,例如 Google 翻譯,它能夠將一種語言的句子翻譯成另一種語言。
  4. 情感分析:LSTM 用於從文本中檢測情感,如分析社交媒體帖子、評論和客戶反饋中的情感。
  5. 時間序列預測:LSTM 可以用於預測時間序列數據中的未來值,例如股票價格、天氣預測和銷售數據預測。
  6. 醫療診斷:LSTM 用於分析患者的醫療數據,以檢測和預測疾病的發展。
  7. 音樂生成:LSTM 可以學習音樂的結構並生成新音樂,例如自動作曲。
  8. 手寫識別:LSTM 用於識別手寫文字,例如手寫數據的數字化輸入。

典型的長短期記憶(LSTM)單元模型

raw-image

LSTM Cell 的結構和運作

LSTM Cell 主要由三個門(gate)組成:遺忘門(Forget Gate),輸入門(Input Gate)和輸出門(Output Gate)。這些門控制信息在記憶細胞中的流動。以下是每個門的詳細說明:

  1. 遺忘門(Forget Gate)
    • 計算公式:
raw-image


    • 功能:決定需要忘記多少先前的記憶。通過 sigmoid 函數 σ,輸出一個0到1之間的數值,0表示完全忘記,1表示完全保留。
  1. 輸入門(Input Gate)
    • 計算公式:
raw-image
    • 功能:決定將多少新的信息存入記憶細胞。輸入門的 sigmoid 函數輸出 iti_tit​,以及候選記憶細胞的 tanh 函數輸出 ~Ct。
  1. 輸出門(Output Gate)
    • 計算公式:
raw-image


    • 功能:決定從記憶細胞輸出多少信息作為當前的隱藏狀態 ht​。通過 sigmoid 函數計算 Ot​,再經過 tanh 函數處理當前的記憶細胞狀態 Ct​。

LSTM Cell 運作步驟

raw-image

紅色箭頭主要表達了記憶細胞狀態和隱藏狀態之間的交互過程,展示了記憶細胞狀態 Ct​ 如何被計算並進一步影響隱藏狀態 ht。這些步驟是LSTM Cell核心的記憶和輸出機制。

LSTM Cell 的優勢

LSTM Cell 的設計使其能夠有效地處理長期依賴問題,記住長時間跨度內的信息,同時在每一時間步中根據需要添加或刪除信息。這使得 LSTM 在處理時間序列數據和自然語言處理任務(如語音識別、語言翻譯等)中非常有用。

總結來說,圖片中展示的模型是一個 LSTM Cell,主要由遺忘門、輸入門和輸出門組成,這些門共同作用,控制信息在記憶細胞中的流動和更新。


參考文獻




119會員
201內容數
本業是影像辨識軟體開發,閒暇時間進修AI相關內容,將學習到的內容寫成文章分享。
留言0
查看全部
發表第一個留言支持創作者!
螃蟹_crab的沙龍 的其他內容
先前上一篇是使用NLT內置的電影評論數據集 movie_reviews,來訓練出情感分析模型,此篇文章介紹可以導入自己的訓練資料集來建立情感分析模組。 [Python][自然語言]NLTK 實現電影評論情感分析 所需套件 pip install pandas pip install sci
情感分析是一種自然語言處理技術,用於自動識別和分析文本中的情感傾向,通常是正向、負向或中性。 我們可以使用 NLTK 來實現一個基於單純貝斯分類器的情感分析模型。
本文介紹了流行的Python套件NLTK(Natural Language Toolkit)的主要特點、功能和在中文和英文語料上的應用。從安裝到實際應用,深入介紹了分詞、停用詞去除、詞性標註、命名實體識別等NLP任務的具體實現和步驟,幫助讀者理解和應用NLTK。
本文利用pyqt5,使用pyttsx3將QLineEdit(單行輸入框)的字串,轉成語音呈現出來。
本文主要使用SpeechRecognition來做一個簡單的語音辨識,使用pyqt5介面呈現。 按下Start Recording,開始錄音,並顯示請開始說話。然後按鈕名改名Stop 在按下Stop Recording,稍等片刻後就會呈現出辨識結果​ 程式範例 import sys i
微調(Fine tune)是深度學習中遷移學習的一種方法,其中預訓練模型的權重會在新數據上進行訓練。 本文主要介紹如何使用新的訓練圖檔在tesseract 辨識模型進行Fine tune 有關於安裝的部分可以參考友人的其他文章 Tesseract OCR - 繁體中文【安裝篇】 將所有資料
先前上一篇是使用NLT內置的電影評論數據集 movie_reviews,來訓練出情感分析模型,此篇文章介紹可以導入自己的訓練資料集來建立情感分析模組。 [Python][自然語言]NLTK 實現電影評論情感分析 所需套件 pip install pandas pip install sci
情感分析是一種自然語言處理技術,用於自動識別和分析文本中的情感傾向,通常是正向、負向或中性。 我們可以使用 NLTK 來實現一個基於單純貝斯分類器的情感分析模型。
本文介紹了流行的Python套件NLTK(Natural Language Toolkit)的主要特點、功能和在中文和英文語料上的應用。從安裝到實際應用,深入介紹了分詞、停用詞去除、詞性標註、命名實體識別等NLP任務的具體實現和步驟,幫助讀者理解和應用NLTK。
本文利用pyqt5,使用pyttsx3將QLineEdit(單行輸入框)的字串,轉成語音呈現出來。
本文主要使用SpeechRecognition來做一個簡單的語音辨識,使用pyqt5介面呈現。 按下Start Recording,開始錄音,並顯示請開始說話。然後按鈕名改名Stop 在按下Stop Recording,稍等片刻後就會呈現出辨識結果​ 程式範例 import sys i
微調(Fine tune)是深度學習中遷移學習的一種方法,其中預訓練模型的權重會在新數據上進行訓練。 本文主要介紹如何使用新的訓練圖檔在tesseract 辨識模型進行Fine tune 有關於安裝的部分可以參考友人的其他文章 Tesseract OCR - 繁體中文【安裝篇】 將所有資料
你可能也想看
Google News 追蹤
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
美國總統大選只剩下三天, 我們觀察一整週民調與金融市場的變化(包含賭局), 到本週五下午3:00前為止, 誰是美國總統幾乎大概可以猜到60-70%的機率, 本篇文章就是以大選結局為主軸來討論近期甚至到未來四年美股可能的改變
Thumbnail
在現今少子化的時代,提升學習效率至關重要。卡爾·紐波特的書《DEEP WORK深度工作力》提供了有效的時間管理和學習策略,能夠幫助我們在競爭激烈的社會中脫穎而出。書中介紹的學習方法和策略,不僅適用於大學生,也可應用在日常生活中,幫助我們擁有良好的學習力,增進生活效率。
Thumbnail
本文介紹了self-attention在處理不固定大小輸入值時的應用,並討論瞭如何計算self-attention以及transformer中的multi-head self-attention。此外,文章還探討了在語音辨識和圖片處理中使用self-attention的方法,以及與CNN的比較。
Thumbnail
這本書訪談了大學學生,並且歸納出幾點建議,書中也提到不必每條條都嚴格遵守,而是選擇一組吸引你的規則,並在大學生活中履行。 我自己在看這本書的時候,結合自己的大學經歷,選取幾點我比較有感觸的部分,分為以下幾點,後面則會提到一些關於書中內容反思
Thumbnail
透過麗鳳督導在心理諮商上的應用,能夠讓我們看待個案問題時有了全新的視角。學理論要浸泡到自動化思考,分析個案時需要考慮家庭結構、互動關係和人際界線等重要元素。此外,心理諮商師需用關係去理解表徵問題,並運用大量的探問與對話,從而從症狀到系統的探索。
Thumbnail
不是只是硬記硬背,而是要用對方法。學習,不分年紀,不分時候,我們隨時都在學習,但有良好的學習技能,像故事/小說書中,電影裡那些擁有超能力的人一樣,可以在自己想學的技能中,一眼就記住,過目不忘的技能,如果擁有或許也是一件不錯的事,但切換到現實,我們認真學習,雖然也能記住,但所要花費的時間成本...
深度學習是機器學習的一個分支,它使用多層神經網絡來模擬和解決複雜的問題。有許多不同的深度學習框架可供選擇,這些框架提供了用於訓練神經網絡的工具和函數。以下是一些常用的深度學習框架的簡介: TensorFlow: TensorFlow由Google開發,是最流行的深度學習框架之一。它具有靈活的計算
Thumbnail
如何與錯誤打交道,就是對於自身的錯誤的察覺,又或者是對於所學的知識正確性如何思辨。 大家好,今天我們來談談「第二層思考」。這是一個相當重要的概念,尤其在現代社會中,我們需要面對各種各樣的資訊和知識,但有時候這些資訊和知識並不是那麼正確。所以,我們必須學會用第二層思考去判斷和分析這些資訊和知識。 首先
Thumbnail
師範大學的 陳佩英 教授來訪均一! 讓我們有機會向教授請益有關個人化學習的前瞻發展可能性。 教授很親切給予我們許多建言與引導,聽完教授的回饋,有三個小心得: 真的覺得自己懂得不過廣泛,也不夠深啊! 2. 也很喜歡教授提醒我們要注意工具背後的教育理念。 a. 特別是對非認知能力的評量,不能用行為主義來
Thumbnail
是什麼讓一個人的成長速度比另一個人更快呢? 《深度學習的技術》的作者楊大輝的答案是:學習的深淺。
Thumbnail
學習如何學習(拓、活) 繼上一篇談到「記、懂、網」之後,讓我們再續談「拓」。在拓篇,我們將要增加知識的品質。而在本篇的最後一節「活」篇,則是探討到學習的管道。 所以,在讀這篇文章時,你也可以反過來,先拉到最下面的「活」篇,掌握正確的學習管道之後,你再回來這裡,將知識依照順序加工
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
美國總統大選只剩下三天, 我們觀察一整週民調與金融市場的變化(包含賭局), 到本週五下午3:00前為止, 誰是美國總統幾乎大概可以猜到60-70%的機率, 本篇文章就是以大選結局為主軸來討論近期甚至到未來四年美股可能的改變
Thumbnail
在現今少子化的時代,提升學習效率至關重要。卡爾·紐波特的書《DEEP WORK深度工作力》提供了有效的時間管理和學習策略,能夠幫助我們在競爭激烈的社會中脫穎而出。書中介紹的學習方法和策略,不僅適用於大學生,也可應用在日常生活中,幫助我們擁有良好的學習力,增進生活效率。
Thumbnail
本文介紹了self-attention在處理不固定大小輸入值時的應用,並討論瞭如何計算self-attention以及transformer中的multi-head self-attention。此外,文章還探討了在語音辨識和圖片處理中使用self-attention的方法,以及與CNN的比較。
Thumbnail
這本書訪談了大學學生,並且歸納出幾點建議,書中也提到不必每條條都嚴格遵守,而是選擇一組吸引你的規則,並在大學生活中履行。 我自己在看這本書的時候,結合自己的大學經歷,選取幾點我比較有感觸的部分,分為以下幾點,後面則會提到一些關於書中內容反思
Thumbnail
透過麗鳳督導在心理諮商上的應用,能夠讓我們看待個案問題時有了全新的視角。學理論要浸泡到自動化思考,分析個案時需要考慮家庭結構、互動關係和人際界線等重要元素。此外,心理諮商師需用關係去理解表徵問題,並運用大量的探問與對話,從而從症狀到系統的探索。
Thumbnail
不是只是硬記硬背,而是要用對方法。學習,不分年紀,不分時候,我們隨時都在學習,但有良好的學習技能,像故事/小說書中,電影裡那些擁有超能力的人一樣,可以在自己想學的技能中,一眼就記住,過目不忘的技能,如果擁有或許也是一件不錯的事,但切換到現實,我們認真學習,雖然也能記住,但所要花費的時間成本...
深度學習是機器學習的一個分支,它使用多層神經網絡來模擬和解決複雜的問題。有許多不同的深度學習框架可供選擇,這些框架提供了用於訓練神經網絡的工具和函數。以下是一些常用的深度學習框架的簡介: TensorFlow: TensorFlow由Google開發,是最流行的深度學習框架之一。它具有靈活的計算
Thumbnail
如何與錯誤打交道,就是對於自身的錯誤的察覺,又或者是對於所學的知識正確性如何思辨。 大家好,今天我們來談談「第二層思考」。這是一個相當重要的概念,尤其在現代社會中,我們需要面對各種各樣的資訊和知識,但有時候這些資訊和知識並不是那麼正確。所以,我們必須學會用第二層思考去判斷和分析這些資訊和知識。 首先
Thumbnail
師範大學的 陳佩英 教授來訪均一! 讓我們有機會向教授請益有關個人化學習的前瞻發展可能性。 教授很親切給予我們許多建言與引導,聽完教授的回饋,有三個小心得: 真的覺得自己懂得不過廣泛,也不夠深啊! 2. 也很喜歡教授提醒我們要注意工具背後的教育理念。 a. 特別是對非認知能力的評量,不能用行為主義來
Thumbnail
是什麼讓一個人的成長速度比另一個人更快呢? 《深度學習的技術》的作者楊大輝的答案是:學習的深淺。
Thumbnail
學習如何學習(拓、活) 繼上一篇談到「記、懂、網」之後,讓我們再續談「拓」。在拓篇,我們將要增加知識的品質。而在本篇的最後一節「活」篇,則是探討到學習的管道。 所以,在讀這篇文章時,你也可以反過來,先拉到最下面的「活」篇,掌握正確的學習管道之後,你再回來這裡,將知識依照順序加工