AI說書 - 從0開始 - 261 | SHAP 數學計算

閱讀時間約 1 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


針對長度 N 的句子而言,當中的第 i 個字,其 SHAP 值的計算方式為:

raw-image

當中

raw-image
  • N 個字的聯盟中,第 i 個字,且自帶價值 v 所對應的 SHAP 值



raw-image
  • 表示在特徵集 S 的基礎上,加入特徵 i 所帶來的邊際貢獻


raw-image
  • 當我們要插入特徵 i 時,特徵集 S 的順序如何安排



raw-image
  • 當考慮到特徵 i 和特徵集 S 已經確定後,剩餘的特徵可以有多少種排列方式,此計算當特徵 i 加入到 S 中後,剩餘的特徵有多少種排列


raw-image
  • 這個項目是特徵集 N 的總階乘,表示特徵 N 中所有元素的排列方式,這相當於所有特徵完全排列的總數


注意最後三項的關係其實就是計算一個權重,表示選擇子集 S 的機率,並且確保每種排列下貢獻的計算公平。




avatar-img
167會員
430內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Learn AI 不 BI 的其他內容
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 現在來介紹 SHAP,Hugging Face 有這項技術的互動介面,在博弈論中,Shapley 值通過“玩家”的邊際貢獻來表達總價值的分配,在一個句子中,單詞就是“玩
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 257 | Attention Head 輸出機率檢視 中,撰寫了程式,試圖視覺化 Attention Head 輸出機率,以下開始
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 257 | Attention Head 輸出機率檢視 中,撰寫了程式,試圖視覺化 Attention Head 輸出機率,以下開始
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 現在我們想要檢視 Attention Head 係數,且以 Word x Word 的方式呈現,以下開始程式撰寫: import pandas as pd impo
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在 AI說書 - 從0開始 - 255 | Attention Head 輸出機率檢視 中,檢視 Attention Head 的輸出機率,這以數學層面來說就是
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 有了 AI說書 - 從0開始 - 254 | Attention Head 輸出機率檢視 的準備,我們可以撰寫以下程式來檢視 Attention Head 的輸出機率:
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 現在來介紹 SHAP,Hugging Face 有這項技術的互動介面,在博弈論中,Shapley 值通過“玩家”的邊際貢獻來表達總價值的分配,在一個句子中,單詞就是“玩
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 257 | Attention Head 輸出機率檢視 中,撰寫了程式,試圖視覺化 Attention Head 輸出機率,以下開始
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 257 | Attention Head 輸出機率檢視 中,撰寫了程式,試圖視覺化 Attention Head 輸出機率,以下開始
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 現在我們想要檢視 Attention Head 係數,且以 Word x Word 的方式呈現,以下開始程式撰寫: import pandas as pd impo
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在 AI說書 - 從0開始 - 255 | Attention Head 輸出機率檢視 中,檢視 Attention Head 的輸出機率,這以數學層面來說就是
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 有了 AI說書 - 從0開始 - 254 | Attention Head 輸出機率檢視 的準備,我們可以撰寫以下程式來檢視 Attention Head 的輸出機率:
你可能也想看
Google News 追蹤
Thumbnail
我很鼓勵投資人不要只投資台股,對股市有一點熟悉度後,建議範圍擴況大到美股,甚至是投資全球。因為台股僅是單一國家/市場,如果能將資產投資到其他國家,風險會更分散,機會也更多,特別是美國股市。 美股會很難懂嗎?我相信你認識的美國企業可能會比台灣企業多,我從標普500成分股前15大企業裡隨便抓十
Thumbnail
美股因多家熱門話題與龍頭企業市值快速增長受到關注,本文介紹如何透過國泰世華CUBE App 開設台股及美股複委託帳戶、定期理財的便利性。 定期投資適合單筆資金有限、經驗不多的理財小白、上班族,或者忙碌、沒時間研究基本面的朋友,國泰世華CUBE App美股定額投資功能,操作便利性幾乎完勝海外券商。
Thumbnail
這是張老師的第三本書,我想前二本應該也有很多朋友們都有讀過,我想絕對是受益良多,而這次在書名上就直接點出,著重在從投資的角度來切入
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是d,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 5中說當Context長度是d,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我很鼓勵投資人不要只投資台股,對股市有一點熟悉度後,建議範圍擴況大到美股,甚至是投資全球。因為台股僅是單一國家/市場,如果能將資產投資到其他國家,風險會更分散,機會也更多,特別是美國股市。 美股會很難懂嗎?我相信你認識的美國企業可能會比台灣企業多,我從標普500成分股前15大企業裡隨便抓十
Thumbnail
美股因多家熱門話題與龍頭企業市值快速增長受到關注,本文介紹如何透過國泰世華CUBE App 開設台股及美股複委託帳戶、定期理財的便利性。 定期投資適合單筆資金有限、經驗不多的理財小白、上班族,或者忙碌、沒時間研究基本面的朋友,國泰世華CUBE App美股定額投資功能,操作便利性幾乎完勝海外券商。
Thumbnail
這是張老師的第三本書,我想前二本應該也有很多朋友們都有讀過,我想絕對是受益良多,而這次在書名上就直接點出,著重在從投資的角度來切入
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是d,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 5中說當Context長度是d,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *