AI說書 - 從0開始 - 288 | Tokenizer 重要性範例之 Embedding 訓練

更新於 發佈於 閱讀時間約 3 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


延續 AI說書 - 從0開始 - 287 | Tokenizer 重要性範例之資料準備,接著來執行 Tokenization:

sample = open("text.txt", "r")
s = sample.read()

f = s.replace("\n", " ")
data = []

for i in sent_tokenize(f):
temp = []
for j in word_tokenize(i):
temp.append(j.lower())
data.append(temp)


# Creating Skip Gram model
model2 = gensim.models.Word2Vec(data, min_count = 1, vector_size = 512, window = 5, sg = 1)
print(model2)


window = 5 限制輸入句子中當前單字和預測單字之間的距離,結果為:

raw-image


為了要檢視效果好壞,我們撰寫一隻計算 Cosine 相似度的程式:

def similarity(word1, word2):
cosine = False
try:
a = model2[word1]
cosine = True
except KeyError:
print(word1, ":[unk] key not found in dictionary")

try:
b = model2[word2]
except KeyError:
cosine = False
print(word2, ":[unk] key not found in dictionary")

if(cosine == True):
dot = np.dot(a, b)
norma = np.linalg.norm(a)
normb = np.linalg.norm(b)
cos = dot / (norma * normb)

aa = a.reshape(1,512)
ba = b.reshape(1,512)
cos_lib = cosine_similarity(aa, ba)
if(cosine == False):
cos_lib = 0
return cos_lib
留言
avatar-img
留言分享你的想法!
avatar-img
Learn AI 不 BI
227會員
652內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
Learn AI 不 BI的其他內容
2025/01/29
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在本章中,我們測量了 Tokenization 對 Transformer 模型後續層的影響,Transformer 模型只能關注堆疊的嵌入層和位置編碼子層中的 Tok
2025/01/29
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在本章中,我們測量了 Tokenization 對 Transformer 模型後續層的影響,Transformer 模型只能關注堆疊的嵌入層和位置編碼子層中的 Tok
2025/01/28
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 想要控管 Token ID 映射的品質,有鑑於此,先定義,先定義 Tokenizer: model_name = 'bert-base-uncased' token
Thumbnail
2025/01/28
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 想要控管 Token ID 映射的品質,有鑑於此,先定義,先定義 Tokenizer: model_name = 'bert-base-uncased' token
Thumbnail
2025/01/27
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 304 | WordPiece Tokenization 介紹與偵測 講 WordPiece Tokenizer,而 AI說書 - 從
Thumbnail
2025/01/27
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 304 | WordPiece Tokenization 介紹與偵測 講 WordPiece Tokenizer,而 AI說書 - 從
Thumbnail
看更多
你可能也想看
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 295 | 各 Tokenizer 之優勢與安裝、AI說書 - 從0開始 - 296 | 各 Tokenizer 之展示、AI說書 -
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 295 | 各 Tokenizer 之優勢與安裝、AI說書 - 從0開始 - 296 | 各 Tokenizer 之展示、AI說書 -
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 295 | 各 Tokenizer 之優勢與安裝 及 AI說書 - 從0開始 - 296 | 各 Tokenizer 之展示,我們繼續
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 295 | 各 Tokenizer 之優勢與安裝 及 AI說書 - 從0開始 - 296 | 各 Tokenizer 之展示,我們繼續
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News