AI說書 - 從0開始 - 316 | Tokenization 後基本資訊窺探與 Embedding 訓練

更新 發佈閱讀 3 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


回顧目前手上有的素材:


今天來探討 Tokenization 後的基本資訊窺探:

unique_tokens = set(tokens)
print(len(unique_tokens))
print(unique_tokens)


結果為:

raw-image
raw-image


接著進行 Embedding 轉換:

from gensim.models import Word2Vec
model = Word2Vec([tokens], compute_loss = True, vector_size = 300, min_count = 1)
model.save("descartes_word2vec.model")


關鍵原文為:

  • Vocabulary is a list of all the unique words the model has learned from. Each word is related to a specific index in the model’s embedding matrix
  • Word vectors (embeddings) are the actual word vectors the model learns during training, stored in a matrix in which each row represents a word in the vocabulary
  • The saved model doesn’t include the original training data (the text you used to train it). It only saves what it learned in the data (word vectors), not the data itself
留言
avatar-img
留言分享你的想法!
avatar-img
Learn AI 不 BI
240會員
884內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
Learn AI 不 BI的其他內容
2025/03/12
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 本章的重點在於,原始的 Prompt 匯入 GPT 模型可能效果不好,因此納入 Embedding 資料庫,將此 Prompt 轉成 Embedding,再將此 Emb
2025/03/12
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 本章的重點在於,原始的 Prompt 匯入 GPT 模型可能效果不好,因此納入 Embedding 資料庫,將此 Prompt 轉成 Embedding,再將此 Emb
2025/03/10
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 整理目前手上有的素材: AI說書 - 從0開始 - 338 | Embedding Based Search 資料集描述 AI說書 - 從0開始 - 339 | E
Thumbnail
2025/03/10
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 整理目前手上有的素材: AI說書 - 從0開始 - 338 | Embedding Based Search 資料集描述 AI說書 - 從0開始 - 339 | E
Thumbnail
2025/03/09
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 整理目前手上有的素材: AI說書 - 從0開始 - 338 | Embedding Based Search 資料集描述 AI說書 - 從0開始 - 339 | E
Thumbnail
2025/03/09
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 整理目前手上有的素材: AI說書 - 從0開始 - 338 | Embedding Based Search 資料集描述 AI說書 - 從0開始 - 339 | E
Thumbnail
看更多
你可能也想看
Thumbnail
還在煩惱平凡日常該如何增添一點小驚喜嗎?全家便利商店這次聯手超萌的馬來貘,推出黑白配色的馬來貘雪糕,不僅外觀吸睛,層次豐富的雙層口味更是讓人一口接一口!本文將帶你探索馬來貘雪糕的多種創意吃法,從簡單的豆漿燕麥碗、藍莓果昔,到大人系的奇亞籽布丁下午茶,讓可愛的馬來貘陪你度過每一餐,增添生活中的小確幸!
Thumbnail
還在煩惱平凡日常該如何增添一點小驚喜嗎?全家便利商店這次聯手超萌的馬來貘,推出黑白配色的馬來貘雪糕,不僅外觀吸睛,層次豐富的雙層口味更是讓人一口接一口!本文將帶你探索馬來貘雪糕的多種創意吃法,從簡單的豆漿燕麥碗、藍莓果昔,到大人系的奇亞籽布丁下午茶,讓可愛的馬來貘陪你度過每一餐,增添生活中的小確幸!
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization AI說書 - 從0開始 - 315 | 文本處理以降低 T
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization AI說書 - 從0開始 - 315 | 文本處理以降低 T
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization AI說書 - 從0開始 - 315 | 文本處理以降低 T
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization AI說書 - 從0開始 - 315 | 文本處理以降低 T
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News