<電磁學筆記1>向量分析之梯度

更新 發佈閱讀 3 分鐘
服用須知 : 本系列內容力求白話、通順、易懂(畢竟是筆記嘛😂),因此較沒有極度嚴謹的數學證明,如有特別嚴謹的需求還是要參考教科書!

知識基礎 :


在正式進入梯度的主題之前,我先帶各位複習一下大一微積分的偏微分符號及其意義 :

  • 𝒹ƒ : ƒ值的微小增量,同理適用於𝒹x、𝒹y等......
  • ∂ƒ/∂x : ƒ在x方向上的偏微分(變化率),同理適用於∂ƒ/∂y等......
  • i、j、k:單位向量

場變化增量:


假設有一坐標空間,內部充斥一個「場」,是甚麼場我們先不管,只知道這個場的強弱分佈依循ƒ關係式。

空間中有一個點,將其沿著一段微小的向量𝒹𝓁移動(如圖),這段位移增量可以表示成x、y、z三個方向分量的相加,亦即:𝒹𝓁=i𝒹x+j𝒹y+k𝒹z。


再來,我們想知道這個點移動前後,ƒ的值改變了多少(即𝒹ƒ),已知xyz三個方向的移動都會分別影響ƒ的值,於是拆開來分析:

  • ƒ在x方向上的改變=ƒ在x方向上的變化率×點在x方向上的移動量,亦即:
raw-image
  • ƒ在y、z方向上的改變量,同理可得。

記得把各方向上的變化量乘上單位向量ijk,使其具有方向性,接著把他們相加起來不就是𝒹ƒ了嗎?因此移動後ƒ的增量為:

raw-image

梯度運算子(Del operator) :


所謂運算子(operator),就是像一部機器,輸入一個值就會輸出相對應的結果。今天設定一個運算子 ∇  ,定義:

raw-image

以輸入ƒ為例,則∇ƒ為f的梯度(念作Gradient f,簡寫為grad f):

raw-image

拿剛剛的∇ƒ和之前提到的動點移動路徑向量𝒹𝓁(=i𝒹x+j𝒹y+k𝒹z)做內積,會發現居然得到了場變化增量𝒹ƒ(注意,內積過後是純量),亦即:

raw-image

梯度(Gradient)的意義:


由上式可以看到梯度的定義漸趨明朗(梯度和路徑的內積=場值變化量),如果說,∇ƒ向量和𝒹𝓁向量間有夾角θ,則可將上式改寫為:

raw-image

當cosθ=1(θ=0度),會發現場變化增量有最大值。

👉意義1:位移向量和梯度向量同向時,場值的變化量最大。因此梯度的方向就是最大變化率的方向。


然而,要達到最大場值變化的路徑有百百種,就如同一座山丘,從底部到山頂的路徑有很多種,我們要找最短的位移𝒹𝓁,但因為路徑最短,所以路途會最陡,ƒ的變化率最大,但增量是一樣的。

想要最短距離達成最大效益,想當然θ要先=0度,也就是移動方向已經對準最陡峭的向量了,此時ƒ的變化率正是梯度∇ƒ(因為增量=變化率乘位移)。

👉意義2:沿著梯度方向走,在梯度最大值處,可最快達到最大增量。


把數學式移項,得到:

raw-image


可見梯度最大值,ƒ隨路徑的變化率也最大。

👉意義3:梯度就是隨不同路徑移動時,ƒ增量的變化率。

參考資料:

中山大學開放式課程 電磁學 周啟教授

周啟電磁學網路課程講義 第一章向量算符


以上就是我的筆記,由於內容屬於原創,如上述有用詞不精、詞不達意、或是觀念錯誤等情況,麻煩在底下留言告知,我會加以修改,請各位多多指教了🙇‍♀️!


📍更多實用資訊,歡迎關注理工女子的宿舍漫遊(IG&Vocus)


留言
avatar-img
留言分享你的想法!
avatar-img
理工女子的宿舍漫遊的沙龍
6會員
6內容數
Hi大家好,這裡是理工女子的宿舍漫遊~ 在我的IG,可以看到我分享的內容主要分這三大主題,分別是 : 🔥搶救學分看這裡🔥 🔥大學攻略看這裡🔥 🔥必備技能看這裡🔥 而部落格就是我創作的上游,這裡,就是長文的家! 在這裡,你可以看到IG貼文的最完整版本,IG內容則是以懶人包為主,追蹤的話還有提醒功能喔~
2024/10/07
符號簡介: 空間中的一點可由三個座標值(q1,q2,q3)決定,其中qn就是所謂的座標表法。 接下來會以V表示純量函數,A表向量函數,其中,Aqn是A在qn方
Thumbnail
2024/10/07
符號簡介: 空間中的一點可由三個座標值(q1,q2,q3)決定,其中qn就是所謂的座標表法。 接下來會以V表示純量函數,A表向量函數,其中,Aqn是A在qn方
Thumbnail
2024/09/21
封閉路徑的線積分 : 在我的上一篇文章https://vocus.cc/article/66e6c82bfd89780001a34dbc裡有提到,散度的產生來自於表面積截到的通量,也就是要有場的通過,散度才不為0,那麼,難道有場通過的情況下就沒有散度為0的特例嗎? 有的,如果今天......
Thumbnail
2024/09/21
封閉路徑的線積分 : 在我的上一篇文章https://vocus.cc/article/66e6c82bfd89780001a34dbc裡有提到,散度的產生來自於表面積截到的通量,也就是要有場的通過,散度才不為0,那麼,難道有場通過的情況下就沒有散度為0的特例嗎? 有的,如果今天......
Thumbnail
2024/09/21
面積向量 : 面積向量可以視為和一表面垂直的向量,同一面上有正反兩個表面,兩表面上的面積向量為反向。 以下有三種以後常遇到的面積向量形式,分別為: 圓形導
Thumbnail
2024/09/21
面積向量 : 面積向量可以視為和一表面垂直的向量,同一面上有正反兩個表面,兩表面上的面積向量為反向。 以下有三種以後常遇到的面積向量形式,分別為: 圓形導
Thumbnail
看更多
你可能也想看
Thumbnail
在小小的租屋房間裡,透過蝦皮購物平臺採購各種黏土、模型、美甲材料等創作素材,打造專屬黏土小宇宙的療癒過程。文中分享多個蝦皮挖寶地圖,並推薦蝦皮分潤計畫。
Thumbnail
在小小的租屋房間裡,透過蝦皮購物平臺採購各種黏土、模型、美甲材料等創作素材,打造專屬黏土小宇宙的療癒過程。文中分享多個蝦皮挖寶地圖,並推薦蝦皮分潤計畫。
Thumbnail
小蝸和小豬因購物習慣不同常起衝突,直到發現蝦皮分潤計畫,讓小豬的購物愛好產生價值,也讓小蝸開始欣賞另一半的興趣。想增加收入或改善伴侶間的購物觀念差異?讓蝦皮分潤計畫成為你們的神隊友吧!
Thumbnail
小蝸和小豬因購物習慣不同常起衝突,直到發現蝦皮分潤計畫,讓小豬的購物愛好產生價值,也讓小蝸開始欣賞另一半的興趣。想增加收入或改善伴侶間的購物觀念差異?讓蝦皮分潤計畫成為你們的神隊友吧!
Thumbnail
知識基礎 : 在正式進入梯度的主題之前,我先帶各位複習一下大一微積分的偏微分符號及其意義 : 𝒹ƒ : ƒ值的微小增量,同理適用於𝒹x、𝒹y等...... ∂ƒ/∂x : ƒ在x方向上的偏微分(變化率),同理適用於∂ƒ/∂y等...... i、j、k:單位向量 場變化增量:
Thumbnail
知識基礎 : 在正式進入梯度的主題之前,我先帶各位複習一下大一微積分的偏微分符號及其意義 : 𝒹ƒ : ƒ值的微小增量,同理適用於𝒹x、𝒹y等...... ∂ƒ/∂x : ƒ在x方向上的偏微分(變化率),同理適用於∂ƒ/∂y等...... i、j、k:單位向量 場變化增量:
Thumbnail
直觀理解 導數:考慮的是單一變數的函數,描述的是函數在某點的斜率或變化率。 偏導數:考慮的是多變數函數,描述的是函數在某個變數變化時的變化率,其他變數保持不變。  (針對各維度的調整 或者稱變化 你要調多少) 應用 導數:在物理學中應用廣泛,例如描述速度和加速度。 偏導數:在多變量分析、優
Thumbnail
直觀理解 導數:考慮的是單一變數的函數,描述的是函數在某點的斜率或變化率。 偏導數:考慮的是多變數函數,描述的是函數在某個變數變化時的變化率,其他變數保持不變。  (針對各維度的調整 或者稱變化 你要調多少) 應用 導數:在物理學中應用廣泛,例如描述速度和加速度。 偏導數:在多變量分析、優
Thumbnail
在平坦的歐式平面 (flat Euclidean plane) 上,方向導數 (directional derivative) 被定義為、兩個鄰近的點的方向向量之差,這也就是,把一個向量、平行輸運 (parallel transport) 到另一個向量的原點之上,然後求它們的差。
Thumbnail
在平坦的歐式平面 (flat Euclidean plane) 上,方向導數 (directional derivative) 被定義為、兩個鄰近的點的方向向量之差,這也就是,把一個向量、平行輸運 (parallel transport) 到另一個向量的原點之上,然後求它們的差。
Thumbnail
在二維的歐式平面 (Euclidean plane) 上,沿著曲線座標 (curvilinear coordinates) 之方向,有二個基底向量 (basis vectors) g⃗₁、和 g⃗₂,它們構成了微小的曲面塊 (surface patch),而度量張量 (metric tensor)
Thumbnail
在二維的歐式平面 (Euclidean plane) 上,沿著曲線座標 (curvilinear coordinates) 之方向,有二個基底向量 (basis vectors) g⃗₁、和 g⃗₂,它們構成了微小的曲面塊 (surface patch),而度量張量 (metric tensor)
Thumbnail
與偏導數 (partial derivative) 不同,全導數 (total derivative) 乃根據所有分量 (而非僅是單一分量) 之微小移動、所產生的各別對於函數數值的貢獻,來逼近函數本身的「值」之微小改變。
Thumbnail
與偏導數 (partial derivative) 不同,全導數 (total derivative) 乃根據所有分量 (而非僅是單一分量) 之微小移動、所產生的各別對於函數數值的貢獻,來逼近函數本身的「值」之微小改變。
Thumbnail
在知道平均數與標準差之後,就可以進一步了解什麼是所謂的「標準分數」了。 標準分數的重要用途是可以幫助我們比較不同單位、不同分散程度的數值。 以概念來說,跟百分等級(PR)有點類似的味道吧。 標準分數在後續的統計當中也很常會出現的。
Thumbnail
在知道平均數與標準差之後,就可以進一步了解什麼是所謂的「標準分數」了。 標準分數的重要用途是可以幫助我們比較不同單位、不同分散程度的數值。 以概念來說,跟百分等級(PR)有點類似的味道吧。 標準分數在後續的統計當中也很常會出現的。
Thumbnail
連同上兩篇文章,我們介紹了機械學習裡的基石,並踩著這些基石了解了改變資料餵送方式,以及動態改變學習率或在更新項中加入動量的方法。我們可以看到這些梯度下降的變化,主要是解決兩個問題:梯度震盪和非最佳的局部最小值造成學習停滯不前的問題。在這篇文章中,我們著重動量和 Adam 的方法來達成克服以上的問題。
Thumbnail
連同上兩篇文章,我們介紹了機械學習裡的基石,並踩著這些基石了解了改變資料餵送方式,以及動態改變學習率或在更新項中加入動量的方法。我們可以看到這些梯度下降的變化,主要是解決兩個問題:梯度震盪和非最佳的局部最小值造成學習停滯不前的問題。在這篇文章中,我們著重動量和 Adam 的方法來達成克服以上的問題。
Thumbnail
  至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋。這一系列主題文章「函數微分的幾何意義」將分多集探討,用幾何角度來了解函數微分。本文章第一集將先引入代數和幾何的觀念;在概略介紹函數的圖形定義。
Thumbnail
  至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋。這一系列主題文章「函數微分的幾何意義」將分多集探討,用幾何角度來了解函數微分。本文章第一集將先引入代數和幾何的觀念;在概略介紹函數的圖形定義。
Thumbnail
這篇文章中將延續上文脈絡,先回顧某一定值的導數和可微分的定義,讓讀者發現x=n時的導數與某個給定的定值n已經形成函數關係;接著透過同一個人的不同裝扮與不同稱呼,來說明數學變換符號的意義。第三段將導數的符號作變換,表示導函數的概念與定義,最後總結導函數即是微分,以及重新回顧微分的意義。
Thumbnail
這篇文章中將延續上文脈絡,先回顧某一定值的導數和可微分的定義,讓讀者發現x=n時的導數與某個給定的定值n已經形成函數關係;接著透過同一個人的不同裝扮與不同稱呼,來說明數學變換符號的意義。第三段將導數的符號作變換,表示導函數的概念與定義,最後總結導函數即是微分,以及重新回顧微分的意義。
Thumbnail
這是微積分科普系列文章的第四篇,在討論微分律之前,讀者需先認識斜率的定義,並能區分平均與瞬時變化率的差異。因為微分律由導數推衍而來,而導數即是求函數圖形上,某一點的切線斜率。本文從生活中的變化講起,提出變化率的計算方式,與數學中斜率的定義。
Thumbnail
這是微積分科普系列文章的第四篇,在討論微分律之前,讀者需先認識斜率的定義,並能區分平均與瞬時變化率的差異。因為微分律由導數推衍而來,而導數即是求函數圖形上,某一點的切線斜率。本文從生活中的變化講起,提出變化率的計算方式,與數學中斜率的定義。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News