上古漢語的邏輯結構 171

更新於 發佈於 閱讀時間約 3 分鐘

4.0 尚芬哥爾操作與升型處理

raw-image


4.1 尚芬哥爾操作

現在我們提出一個主張,上古漢語的語構不單具有一個頗為清晰的論元\函子 (原語序) 結構,這個結構更結合了尚芬哥爾操作,而且必須通過尚芬哥爾操作才能進一步理解上古漢語的邏輯結構。上古漢語裡即使是最簡單的句式亦隱含這種「處理」。自然語言當然不可能有刻意的「處理」,除非重瞳四目的「倉頡」在造字之餘亦同時造出上古漢語的語構。

我們只能說,上古漢語使用者的思維方式基本上有別於歐西語系以主語/謂語結構來描述世界的思維習慣。

我們用 Ya4 來解釋上古漢語中的尚芬哥爾操作。

按照後項為前項函子的原則,我們有這個推導﹕

raw-image

推導過程中的尚芬哥爾操作則可表述如下﹕

raw-image

4.1_12 表達的是「德,孝之本也」的推導過程。

4.1_13 表達的則是過程中的尚芬哥爾操作。

「也(之(本)(也))(孝)」下的第一行不是各個終端符的語構型,所標示的是各終端符的函子或論元身份及它們之間的關係。

「本」﹑「德」﹑「考」三字明顯屬於基本型 n,因此賦予變元的身份,分別記為「x1」﹑「x2 」﹑「x3 」。

「也」字和「之」字均屬函子,分別記為「f1」和「f2」。

f3 來自 f1f2 的結合,或 f1 以 f2 為其論元。

f3 取 x1 為其論元而生成 f4

f4 取 x2 為其論元而生成 f5

最後,f5 x3 為其論元而生成「德孝之本也」一句。

需要注意的是,f1f2f3f4f5 都是單元函子,所體現的正是將多元函子化約為單元函子的尚芬哥爾操作。讀者應該不難看出 4.1_13 其實是一系列緊密互扣的單元函數。我們的推導系統 (下稱「W 系統」) 是一個相當簡單﹑透明的系統,以 4.1_13 為例,適當地倒置前後項後,從左至右閱讀,它的推導過程只不過是最左方的函子取其右項為論元而結合成一個新函子,該新函子取其右項為論元而結合成另一個新函子,如此類推。

如按原語序,推導一般是反方向進行,即從右至左,但在沒有進行前後項倒置及其它相關的對應處理時,有些地方會變得不明朗。

此外,原語序需要使用雙向記法,譬如

raw-image

但這同時模糊了推導的方向。

上例的推導可從「之」字開始,取得「孝之本」的 後則改從「也」字出發,尋求 n\(n\s) 的論元。如要從「也」字出發,向左作單向推導,4.1_14 的語構型指派是不足的,必須提供輔助性手段。

總而言之,本書的觀點是,原語序的處理表現不出上古漢語的函子/論元結構,也見不到這種結構在上古漢語中採用的單元函數特徵。

__________

待續


留言
avatar-img
留言分享你的想法!
avatar-img
sen的沙龍
9會員
401內容數
我們這裡談兩個東西: 哲學和邏輯,以及與哲學和邏輯相關的東西。 首先開設的房間是《綁架愛麗絲 之 地下邏輯》。 隨後將陸續開設《綁架愛麗絲 之 鏡像語言》和《上古漢語的邏輯結構》。 聯絡作者﹕sen.wong@protonmail.com
sen的沙龍的其他內容
2025/01/31
6.0 結語﹕哲學就是語言哲學 五 十九世紀末及至廿世紀初中葉的語言哲學家 —— 不論是屬於邏輯學派或自然語言分析學派的 —— 都告訴我們很多的哲學問題實在都是語言問題。 自此之後,整個世界的哲學走向大概都以英語系的語言分析哲學為主導﹔在這之前,德語哲學主導了西方哲學﹔再往前推是法語﹔再之前,
Thumbnail
2025/01/31
6.0 結語﹕哲學就是語言哲學 五 十九世紀末及至廿世紀初中葉的語言哲學家 —— 不論是屬於邏輯學派或自然語言分析學派的 —— 都告訴我們很多的哲學問題實在都是語言問題。 自此之後,整個世界的哲學走向大概都以英語系的語言分析哲學為主導﹔在這之前,德語哲學主導了西方哲學﹔再往前推是法語﹔再之前,
Thumbnail
2025/01/30
6.0 結語﹕哲學就是語言哲學 三 試看下面的一個日用德語句﹕ [Carnap 1931] 英語可譯作「There is nothing outside」,漢語可譯作「外面什麼也沒有」。與 6.0_2 比較一下即突出了一個差別﹕6.0_3 是一個合乎德語語構的句子,而「nicht」的用法是正當
Thumbnail
2025/01/30
6.0 結語﹕哲學就是語言哲學 三 試看下面的一個日用德語句﹕ [Carnap 1931] 英語可譯作「There is nothing outside」,漢語可譯作「外面什麼也沒有」。與 6.0_2 比較一下即突出了一個差別﹕6.0_3 是一個合乎德語語構的句子,而「nicht」的用法是正當
Thumbnail
2025/01/29
6.0 結語﹕哲學就是語言哲學 三 縱觀整個包括近代、現代、當代的西方哲學史也就是用屈折語提出的哲學思路。 雖然我們不能說所有的哲學和邏輯問題都是語言問題,但我們有理由相信所有的哲學和邏輯問題都必須使用語言來構思和構建﹕換句話說,用任一語言提出的問題必然是該語言的產物﹔用任一語言提出的問題必然
Thumbnail
2025/01/29
6.0 結語﹕哲學就是語言哲學 三 縱觀整個包括近代、現代、當代的西方哲學史也就是用屈折語提出的哲學思路。 雖然我們不能說所有的哲學和邏輯問題都是語言問題,但我們有理由相信所有的哲學和邏輯問題都必須使用語言來構思和構建﹕換句話說,用任一語言提出的問題必然是該語言的產物﹔用任一語言提出的問題必然
Thumbnail
看更多
你可能也想看
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
2.0 上古漢語的特殊結構 2.3 之乎者也 —  也 (矣﹑焉) 2.3.1 也 一﹕初探之四 現在讓我們從函數引申出來的函子/論元觀點來解析上述「也」字的用法。用初級計算機科學編程的語言來說,函子就是一個具有函數功能的物件 (object),方便我們使用﹔它的功能就是讓我們可以召喚
Thumbnail
2.0 上古漢語的特殊結構 2.3 之乎者也 —  也 (矣﹑焉) 2.3.1 也 一﹕初探之四 現在讓我們從函數引申出來的函子/論元觀點來解析上述「也」字的用法。用初級計算機科學編程的語言來說,函子就是一個具有函數功能的物件 (object),方便我們使用﹔它的功能就是讓我們可以召喚
Thumbnail
2.0 上古漢語的特殊結構 2.1 若干問題的澄清 二 舉個例子,假設有這樣的一個合乎語法的字符串﹕ 已知的是「AB」屬 x 語構型,而「A」屬 y 語構型,那麼「B」顯然屬於語構型 y\x。 其次,語言學家薩皮爾對語法的一個觀察十分準確﹕所有語法都有遺漏。 由於我們的研究對象是
Thumbnail
2.0 上古漢語的特殊結構 2.1 若干問題的澄清 二 舉個例子,假設有這樣的一個合乎語法的字符串﹕ 已知的是「AB」屬 x 語構型,而「A」屬 y 語構型,那麼「B」顯然屬於語構型 y\x。 其次,語言學家薩皮爾對語法的一個觀察十分準確﹕所有語法都有遺漏。 由於我們的研究對象是
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 1.4.2 函算語法與函數概念 四 在以語構範疇為單位的語言結構上,同樣可以應用前述的函數概念或規則。其中一個最大的分別是,若以 1.4.2_4 為用作對比的例子,函算語法的論域 (domain of dis
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 1.4.2 函算語法與函數概念 四 在以語構範疇為單位的語言結構上,同樣可以應用前述的函數概念或規則。其中一個最大的分別是,若以 1.4.2_4 為用作對比的例子,函算語法的論域 (domain of dis
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 1.4.2 函算語法與函數概念 三 弗雷格從語言結構的觀點出發,提出了函數可以被視為一個不完整的表式。如果我們將一個函數拆解為一個由一個函子及其 (一個或多個) 論元所組成的表式,那麼該函子便是一個有待滿足的
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 1.4.2 函算語法與函數概念 三 弗雷格從語言結構的觀點出發,提出了函數可以被視為一個不完整的表式。如果我們將一個函數拆解為一個由一個函子及其 (一個或多個) 論元所組成的表式,那麼該函子便是一個有待滿足的
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 1.4.2 函算語法與函數概念 二 關於函數的演變和弗雷格對函數的看法,前面的 1.2 節和 1.3 節已經談論了不少。 由於函數在數學﹑邏輯學﹑計算語言學極為重要,更且是本書闡述的語法的中心概念,因此有必要再略作
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 1.4.2 函算語法與函數概念 二 關於函數的演變和弗雷格對函數的看法,前面的 1.2 節和 1.3 節已經談論了不少。 由於函數在數學﹑邏輯學﹑計算語言學極為重要,更且是本書闡述的語法的中心概念,因此有必要再略作
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 七 指派範疇是第一步, 第二步是設定推導規則。 推導規則的作用是對某一給定的表式63 進行判定,看它是否一個貫通的表式(或詞構)。就上述英語例句而言,我們只需一個簡單的單向通則 (general rule)﹕6
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 七 指派範疇是第一步, 第二步是設定推導規則。 推導規則的作用是對某一給定的表式63 進行判定,看它是否一個貫通的表式(或詞構)。就上述英語例句而言,我們只需一個簡單的單向通則 (general rule)﹕6
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 五 艾杜凱維茨的語構範疇理論有兩個關於形式語言的預設﹕[Ajdukiewicz 1935: 2]57 1.4.1_1 一個詞構 (das Wortgefüge)58 必須是一個連貫的整體才具有意義。 1.
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 五 艾杜凱維茨的語構範疇理論有兩個關於形式語言的預設﹕[Ajdukiewicz 1935: 2]57 1.4.1_1 一個詞構 (das Wortgefüge)58 必須是一個連貫的整體才具有意義。 1.
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News