多模態融合(Multimodal Fusion)

更新 發佈閱讀 3 分鐘

多模態融合(Multimodal Fusion)策略是指在多模態學習中,如何將來自不同模態(如文字、影像、音訊等)的資訊進行整合的各種方法。融合策略直接影響模型對複雜多源資料的理解與表現。根據融合時間點及方式,常見的融合策略分類如下:

1. 早期融合(Early Fusion)

  • 在資料輸入階段就將不同模態的原始資料或低階特徵拼接或組合,
  • 通常在單一模型中聯合學習整合特徵,
  • 優點是能捕捉模態間的細微互動和依賴,
  • 缺點是需要不同模態特徵間有相近的結構或尺度,否則處理較難且可能造成維度爆炸。

2. 中期融合(Mid-level Fusion)

  • 在各模態經過部分獨立處理後,在模型中間層進行融合,
  • 一般使用注意力機制、跨模態變換器等方法實現特徵交互,
  • 平衡了早期融合的特徵互動和晚期融合的靈活性,
  • 可捕捉低階和高階語義的跨模態聯繫,靈活性較高。

3. 晚期融合(Late Fusion)

  • 各模態獨立訓練模型,最終在決策層面將結果融合,
  • 融合方法包括加權平均、投票機制或再訓練一個簡單分類器等等,
  • 優點是方便融合已有的強單模態模型,且對缺失模態有較好容錯能力,
  • 缺點是無法在特徵層面捕捉跨模態細節互動。

4. 混合融合(Hybrid Fusion)

  • 結合早期、中期和晚期的融合方法,
  • 通過多階段或多層結合各種融合策略優勢,
  • 模型結構複雜但能取得較好表現。

5. 其他分類

  • 特徵級融合(Feature-level Fusion):將各模態的特徵投影到共享語義空間,合併後進行統一處理。
  • 模型級融合(Model-level Fusion):在模型架構層面整合不同模態的特徵與輸出。
  • 決策級融合(Decision-level Fusion):在最終輸出層融合各模態獨立決策,常用於集成學習。


小結

多模態融合策略根據融合時點和方式不同,分為早期融合、中期融合及晚期融合三大類,並延伸出混合融合等多種形式。選擇適合的融合策略取決於數據特性、模態差異、計算成本及任務需求。典型現代多模態模型多採用中期融合,利用注意力機制實現深度特徵互動以達到更優效果。

留言
avatar-img
留言分享你的想法!
avatar-img
郝信華 iPAS AI應用規劃師 學習筆記
25會員
495內容數
現職 : 富邦建設資訊副理 證照:經濟部 iPAS AI應用規劃師 AWS Certified AI Practitioner (AIF-C01)
你可能也想看
Thumbnail
還在煩惱平凡日常該如何增添一點小驚喜嗎?全家便利商店這次聯手超萌的馬來貘,推出黑白配色的馬來貘雪糕,不僅外觀吸睛,層次豐富的雙層口味更是讓人一口接一口!本文將帶你探索馬來貘雪糕的多種創意吃法,從簡單的豆漿燕麥碗、藍莓果昔,到大人系的奇亞籽布丁下午茶,讓可愛的馬來貘陪你度過每一餐,增添生活中的小確幸!
Thumbnail
還在煩惱平凡日常該如何增添一點小驚喜嗎?全家便利商店這次聯手超萌的馬來貘,推出黑白配色的馬來貘雪糕,不僅外觀吸睛,層次豐富的雙層口味更是讓人一口接一口!本文將帶你探索馬來貘雪糕的多種創意吃法,從簡單的豆漿燕麥碗、藍莓果昔,到大人系的奇亞籽布丁下午茶,讓可愛的馬來貘陪你度過每一餐,增添生活中的小確幸!
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
Thumbnail
跨領域合作與溝通 在現代AI時代中,跨領域合作與溝通能力已成為不可或缺的重要職能。隨著技術不斷發展,AI項目通常需要來自不同領域的專業知識,如技術、設計、業務等。因此,能夠與來自不同背景的人有效溝通和合作,成為實現成功的關鍵。 跨領域合作的重要性 跨領域合作涉及將不同領域的專業知識和技
Thumbnail
跨領域合作與溝通 在現代AI時代中,跨領域合作與溝通能力已成為不可或缺的重要職能。隨著技術不斷發展,AI項目通常需要來自不同領域的專業知識,如技術、設計、業務等。因此,能夠與來自不同背景的人有效溝通和合作,成為實現成功的關鍵。 跨領域合作的重要性 跨領域合作涉及將不同領域的專業知識和技
Thumbnail
最近在嘗試使用不同的AI生圖方式混合出圖的方式,採用A平台的優點,並用B平台後製的手法截長補短,創造出自己更想要的小說場景,效果不錯,現在以這張圖為例,來講一下我的製作步驟。
Thumbnail
最近在嘗試使用不同的AI生圖方式混合出圖的方式,採用A平台的優點,並用B平台後製的手法截長補短,創造出自己更想要的小說場景,效果不錯,現在以這張圖為例,來講一下我的製作步驟。
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 仔細看 AI說書 - 從0開始 - 66 中,Decoder 的 Multi-Head Attention 框框,會發現有一條線空接,其實它是有意義的,之所以空接,是因
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 仔細看 AI說書 - 從0開始 - 66 中,Decoder 的 Multi-Head Attention 框框,會發現有一條線空接,其實它是有意義的,之所以空接,是因
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 到 AI說書 - 從0開始 - 63 為止,我們已經介紹完 Multi-Head Attention ,接著我們來談 Add & Norm 兩元件的功能: Add
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 到 AI說書 - 從0開始 - 63 為止,我們已經介紹完 Multi-Head Attention ,接著我們來談 Add & Norm 兩元件的功能: Add
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 講完 Transformer 之 Encoder 架構中的 Embedding 與 Positional Encoding 部分,現在進入 Multi-Head Att
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 講完 Transformer 之 Encoder 架構中的 Embedding 與 Positional Encoding 部分,現在進入 Multi-Head Att
Thumbnail
  經過三篇的進展,我們目前實作的網路已經能做到同時訓練多種風格,且後續可以直接進行轉換,不用重新訓練,但是這種方法畢竟還是受到了預訓練的風格制約,無法跳脫出來,那麼有什麼辦法能夠讓他對於沒學過的風格也有一定的反應能力呢?
Thumbnail
  經過三篇的進展,我們目前實作的網路已經能做到同時訓練多種風格,且後續可以直接進行轉換,不用重新訓練,但是這種方法畢竟還是受到了預訓練的風格制約,無法跳脫出來,那麼有什麼辦法能夠讓他對於沒學過的風格也有一定的反應能力呢?
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News