付費限定
方格精選

門外漢的影像轉譯(Image-to-Image Translation)

更新於 發佈於 閱讀時間約 2 分鐘
raw-image

上圖為本文提到的影像轉譯演算法們以及他們的損失函式分解一覽圖。如果想知道更多關於影像轉譯演算法,請繼續閱讀。

在影像生成的領域中,其中一個富有挑戰的是影像對影像的轉譯(image to image translation) 問題。取決於問題的設計,需要兩組各自屬於不同領域(domains)的影像集作為輸入。這兩組影像集,根據轉譯的方向,可以分別稱為來源影像集,以及目標影像集。 影像轉譯是透過模型學習來源和目標影像集之間的映射關係,給定一個來源影像作為輸入,模型則生成一個符合目標領域分佈的影像。

提到生成影像的模型,在深度學習中快速獲得大眾歡迎的生成對抗網路(Generative Adversarial Network),簡稱為 GAN。架構上為兩個網路,一個是 Generator,另一個則是 Discriminator。兩個網路共同最佳化一個損失函示,只是最佳化的方向相反。

Outline:

Conditional GAN (cGAN)

Mode Collapse

Paired Image-to-Image

Unpaired image-to-image

Cycle Consistency

Attention-Guided Methods

Normalization


以行動支持創作者!付費即可解鎖
本篇內容共 14889 字、0 則留言,僅發佈於翻滾吧!駭客女孩!你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
avatar-img
留言分享你的想法!
avatar-img
Rene Wang的沙龍
70會員
35內容數
<p>專為年輕的女孩設計的科學/資訊科技寫作計畫,希望讓每位女孩在體脂肪、青春痘與暗戀對象之外,還能找到新的生活樂趣。</p>
Rene Wang的沙龍的其他內容
2021/03/19
一個好的自然語言模型,若出現了語言模型的 vocabulary set 未曾收錄的單字,語言模型就會產生 Out-of-Vocabulary (OOV)。 本文介紹 subword algorithms 介於 word-level 和 character-level 解決 OOV 的方法。
Thumbnail
2021/03/19
一個好的自然語言模型,若出現了語言模型的 vocabulary set 未曾收錄的單字,語言模型就會產生 Out-of-Vocabulary (OOV)。 本文介紹 subword algorithms 介於 word-level 和 character-level 解決 OOV 的方法。
Thumbnail
2021/02/26
本篇文章前半段先對網路裁減做簡單介紹,後半段針對彩卷假說作文獻式的探討。網路裁減是一種重新發現等價小網路的方法,主要目的在為 over-parameterized 的方式訓練而成的類神經網路提供一個精簡版的網路,有助於在資源受限的平台上運行。彩卷假說則是探討權重初始值和網路裁減之間的關係。
Thumbnail
2021/02/26
本篇文章前半段先對網路裁減做簡單介紹,後半段針對彩卷假說作文獻式的探討。網路裁減是一種重新發現等價小網路的方法,主要目的在為 over-parameterized 的方式訓練而成的類神經網路提供一個精簡版的網路,有助於在資源受限的平台上運行。彩卷假說則是探討權重初始值和網路裁減之間的關係。
Thumbnail
2021/01/08
多任務學習指的是使用多個相關的任務目標(Multiple objectives)來學習共享的表示方法。在這篇文章中,我們會介紹 google 的 youtube recommender 系統就是利用 Multi-gate Mixture of Experts 來達成多目標多任務學習的方式。
Thumbnail
2021/01/08
多任務學習指的是使用多個相關的任務目標(Multiple objectives)來學習共享的表示方法。在這篇文章中,我們會介紹 google 的 youtube recommender 系統就是利用 Multi-gate Mixture of Experts 來達成多目標多任務學習的方式。
Thumbnail
看更多
你可能也想看
Thumbnail
透過蝦皮分潤計畫,輕鬆賺取零用金!本文分享5-6月實測心得,包含數據流程、實際收入、平臺優點及注意事項,並推薦高分潤商品,教你如何運用空閒時間創造被動收入。
Thumbnail
透過蝦皮分潤計畫,輕鬆賺取零用金!本文分享5-6月實測心得,包含數據流程、實際收入、平臺優點及注意事項,並推薦高分潤商品,教你如何運用空閒時間創造被動收入。
Thumbnail
單身的人有些會養寵物,而我養植物。畢竟寵物離世會傷心,植物沒養好再接再厲就好了~(笑)
Thumbnail
單身的人有些會養寵物,而我養植物。畢竟寵物離世會傷心,植物沒養好再接再厲就好了~(笑)
Thumbnail
不知你有沒有過這種經驗?衛生紙只剩最後一包、洗衣精倒不出來,或電池突然沒電。這次一次補貨,從電池、衛生紙到洗衣精,還順便分享使用心得。更棒的是,搭配蝦皮分潤計畫,愛用品不僅自己用得安心,分享給朋友還能賺回饋。立即使用推薦碼 X5Q344E,輕鬆上手,隨時隨地賺取分潤!
Thumbnail
不知你有沒有過這種經驗?衛生紙只剩最後一包、洗衣精倒不出來,或電池突然沒電。這次一次補貨,從電池、衛生紙到洗衣精,還順便分享使用心得。更棒的是,搭配蝦皮分潤計畫,愛用品不僅自己用得安心,分享給朋友還能賺回饋。立即使用推薦碼 X5Q344E,輕鬆上手,隨時隨地賺取分潤!
Thumbnail
身為一個典型的社畜,上班時間被會議、進度、KPI 塞得滿滿,下班後只想要找一個能夠安靜喘口氣的小角落。對我來說,畫畫就是那個屬於自己的小樹洞。無論是胡亂塗鴉,還是慢慢描繪喜歡的插畫人物,那個專注在筆觸和色彩的過程,就像在幫心靈按摩一樣,讓緊繃的神經慢慢鬆開。
Thumbnail
身為一個典型的社畜,上班時間被會議、進度、KPI 塞得滿滿,下班後只想要找一個能夠安靜喘口氣的小角落。對我來說,畫畫就是那個屬於自己的小樹洞。無論是胡亂塗鴉,還是慢慢描繪喜歡的插畫人物,那個專注在筆觸和色彩的過程,就像在幫心靈按摩一樣,讓緊繃的神經慢慢鬆開。
Thumbnail
本文參考TensorFlow官網Deep Convolutional Generative Adversarial Network的程式碼來加以實作說明。 示範如何使用深度卷積生成對抗網路(DCGAN) 生成手寫數位影像。
Thumbnail
本文參考TensorFlow官網Deep Convolutional Generative Adversarial Network的程式碼來加以實作說明。 示範如何使用深度卷積生成對抗網路(DCGAN) 生成手寫數位影像。
Thumbnail
延續上一篇訓練GAM模型,這次我們讓神經網路更多層更複雜一點,來看訓練生成的圖片是否效果會更好。 [深度學習][Python]訓練MLP的GAN模型來生成圖片_訓練篇 資料集分割處理的部分在延續上篇文章,從第五點開始後修改即可,前面都一樣 訓練過程,比較圖 是不是CNN的效果比MLP還要好,
Thumbnail
延續上一篇訓練GAM模型,這次我們讓神經網路更多層更複雜一點,來看訓練生成的圖片是否效果會更好。 [深度學習][Python]訓練MLP的GAN模型來生成圖片_訓練篇 資料集分割處理的部分在延續上篇文章,從第五點開始後修改即可,前面都一樣 訓練過程,比較圖 是不是CNN的效果比MLP還要好,
Thumbnail
本文主要介紹,如何利用GAN生成對抗網路來訓練生成圖片。 利用tensorflow,中的keras來建立生成器及鑑別器互相競爭訓練,最後利用訓練好的生成器來生成圖片。 GAN生成對抗網路的介紹 它由生成網路(Generator Network)和鑑別網路(Discriminator Netwo
Thumbnail
本文主要介紹,如何利用GAN生成對抗網路來訓練生成圖片。 利用tensorflow,中的keras來建立生成器及鑑別器互相競爭訓練,最後利用訓練好的生成器來生成圖片。 GAN生成對抗網路的介紹 它由生成網路(Generator Network)和鑑別網路(Discriminator Netwo
Thumbnail
前言 在閱讀《強化式學習:打造最強 AlphaZero 通用演算法》時,文中介紹了殘差網路,並推薦了兩篇論文;因為在看了書後,對殘差網路的概念還是不很清楚,於是決定用ChatGPT翻譯這兩篇論文來增強理解,以下正文是第一篇論文:Deep Residual Learning for Image Re
Thumbnail
前言 在閱讀《強化式學習:打造最強 AlphaZero 通用演算法》時,文中介紹了殘差網路,並推薦了兩篇論文;因為在看了書後,對殘差網路的概念還是不很清楚,於是決定用ChatGPT翻譯這兩篇論文來增強理解,以下正文是第一篇論文:Deep Residual Learning for Image Re
Thumbnail
U-Net演算法架構解析,首次介紹了U-Net的設計,架構,以及在Stable-diffusion中的應用。詳盡分析了U-Net的收縮路徑、擴展路徑、最終層,以及形變不變性的應用。同時提供了相關論文以及PyTorch實作的參考資料。
Thumbnail
U-Net演算法架構解析,首次介紹了U-Net的設計,架構,以及在Stable-diffusion中的應用。詳盡分析了U-Net的收縮路徑、擴展路徑、最終層,以及形變不變性的應用。同時提供了相關論文以及PyTorch實作的參考資料。
Thumbnail
這篇文章探討了生成式對抗網路中機率分佈的使用與相關的訓練方式,包括Generator不同的點、Distriminator的訓練過程、生成圖片的條件設定等。此外,也提到了GAN訓練的困難與解決方式以及不同的learning方式。文章內容豐富且詳細,涵蓋了GAN的各個相關面向。
Thumbnail
這篇文章探討了生成式對抗網路中機率分佈的使用與相關的訓練方式,包括Generator不同的點、Distriminator的訓練過程、生成圖片的條件設定等。此外,也提到了GAN訓練的困難與解決方式以及不同的learning方式。文章內容豐富且詳細,涵蓋了GAN的各個相關面向。
Thumbnail
Stability AI在圖片/影片/聲音生成領域貢獻了不少心力,近期提出了更加高效率的對抗生成蒸餾方法,只需進行一步計算,便能打敗LCM需要4步計算的結果,來看看具體是如何做到的。
Thumbnail
Stability AI在圖片/影片/聲音生成領域貢獻了不少心力,近期提出了更加高效率的對抗生成蒸餾方法,只需進行一步計算,便能打敗LCM需要4步計算的結果,來看看具體是如何做到的。
Thumbnail
前言 在先前的文章中,我們探討了 IBM Watsonx 在客戶滿意度分析中的應用。今天,我們將利用 Google 的兩款大型語言模型(LLM)— flan-ul2 和 flan-t5-xxl,展示它們如何串聯起來生成關於特定主題的隨機問題和回答。 在這篇文章中,將使用 SimpleSequen
Thumbnail
前言 在先前的文章中,我們探討了 IBM Watsonx 在客戶滿意度分析中的應用。今天,我們將利用 Google 的兩款大型語言模型(LLM)— flan-ul2 和 flan-t5-xxl,展示它們如何串聯起來生成關於特定主題的隨機問題和回答。 在這篇文章中,將使用 SimpleSequen
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News