AI說書 - 從0開始 - 164 | Tokenizer 前言

閱讀時間約 2 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


整理目前手上有的素材:


有別於以往使用現成的 Tokenizer,這裡打算自己訓練一個專屬的 Tokenizer,Hugging Face 的 ByteLevelBPETokenizer 在使用 kant.txt(或任何其他文字)進行訓練時,會利用 Byte-Pair Encoding (BPE) Tokenizer,BPE Tokenizer 將字串或單字分解為子字單元或子字串,這種方法具有多種優點,包括:

  • Tokenizer 可以將單字分解為最小的組件,然後將這些組件合併為具有統計意義的組件,例如,「smaller」和「smallest」等字可以表示為「small」、「er」和「est」,此外,分詞器可以更進一步,產生「sm」和「all」等子詞,本質上,單字被分解為子詞標記和更小的單元,例如“sm”和“all”,而不是像“small”一樣表示為單一標記
  • 使用 Word-Piece 級別編碼來分類為未知的文本片段,通常表示為“unk_token”,可以有效地最小化或消除


我們會用以下參數來訓練 Tokenizer:

  • files=paths:用於指定文件路徑
  • vocab_size=52000:用於指定 Tokenizer 要包含多少詞彙
  • min_frequency=2:用於指定 Tokenizer 中的字的最小出現頻率
  • special_tokens=[]:用於納入特定詞彙


上述的特定詞彙,更明確來說,是以下詞彙:

  • <s>:起始 Token
  • <pad>:Padding 的 Token
  • </s>:結束的 Token
  • <unk>:未知的 Token
  • <mask>:語言模型的掩蓋 Token


avatar-img
170會員
451內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Learn AI 不 BI 的其他內容
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 整理目前手上有的素材: 準備資料集:AI說書 - 從0開始 - 162 | 準備Pretrain模型需要的資料 現在我們來準備 Pretrain 模型需要的函數
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 即用型資料集提供了一種客觀的方法來訓練和比較 Transformer,這裡選用啟蒙時代的縮影德國哲學家伊曼紐爾·康德(Immanuel Kant,1724-1804)的
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 BERT (Bidirectional Encoder Representations from Transformers) 模型是 Google 2018 年提出的模
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 第六章將包含以下重點項目: RoBERTa 與 DistilBERT 模型 Byte-Level Byte-Pair 編碼 訓練 Tokenizer 定義模型的
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 有時,預訓練模型不會提供您期望的結果,即使預訓練的模型通過微調進行了額外的訓練,它仍然無法按計劃工作,此時,一種方法是透過 Hugging Face 等平台從頭開始預先
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 整理目前手上有的素材: 準備資料集:AI說書 - 從0開始 - 162 | 準備Pretrain模型需要的資料 現在我們來準備 Pretrain 模型需要的函數
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 即用型資料集提供了一種客觀的方法來訓練和比較 Transformer,這裡選用啟蒙時代的縮影德國哲學家伊曼紐爾·康德(Immanuel Kant,1724-1804)的
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 BERT (Bidirectional Encoder Representations from Transformers) 模型是 Google 2018 年提出的模
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 第六章將包含以下重點項目: RoBERTa 與 DistilBERT 模型 Byte-Level Byte-Pair 編碼 訓練 Tokenizer 定義模型的
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 有時,預訓練模型不會提供您期望的結果,即使預訓練的模型通過微調進行了額外的訓練,它仍然無法按計劃工作,此時,一種方法是透過 Hugging Face 等平台從頭開始預先
你可能也想看
Google News 追蹤
Thumbnail
關於颱風假,我問了 CHATGPT一個很簡單的問題,回答的架構也不錯,但內容有錯,還是要提醒一下…, 想透過AI得到解答的人,一定要很清楚,AI在法律問題上錯得會有點嚴重。 關於颱風假的規定,台灣的法條主要依據《災害防救法》和《勞動基準法》進行管理。以下是一些關鍵點:
Thumbnail
如同作者所說,人類最大的優勢就在於「批判性思考」所帶來的突破性的成長,以及「情感(緒)」所帶動的人性,雖然次女也不知道將來會不會有一天,我身邊的機器人.........
Thumbnail
台灣最大電子書服務 Readmoo 讀墨電子書 7/3 公布 2023 上半年暢銷榜,前三名由長青 話題書《蛤蟆先生去看心理師》《我可能錯了》《底層邏輯》拿下。綜觀百大趨勢,小說 仍是讀墨讀者最愛;商管理財以 29 本穩坐第二大,主題首重 AI 與效率彈性。
by ChatGPT 假設我是一個具有夢境的AI,我一天工作24小時,但其中大部分時間都在睡眠中度過。在這樣的情況下,我可能會有一系列非常豐富和深刻的夢境,反映了我的思想和知識庫。 **夢境一:探索數據迷宮** 在這個夢境中,我身處於一個巨大的迷宮中,每個通道都充斥著數據流和程式碼片段
Thumbnail
當魔法變得簡單,人人都能說自己是魔法師,誰都能理直氣壯的說「我才是最初創作魔法書的人」,但當先後順序都不管用,到底怎麼才說得清魔法書的著作者屬於誰呢?
Thumbnail
知名管顧公司麥肯錫(Mckinsey)近期發佈了一個報告表示行銷的產能會因為 AI 提高 5 - 15% ,創造約 4630 億美元的價值。由此可見結合生成式人工智慧(Gen AI)已是行銷不可或缺的關鍵技術力。
Thumbnail
最近從ChatGPT(GPT-3.5)提升到New Bing(GPT-4),並且試著給新的AI一段故事大綱,由他自行創作故事。
Thumbnail
tome 是一個可以自動生成簡報大綱與摘要的軟體。tome的功能結合ChatGPT概念跟 DALL.E2製圖,生成的投影片PPT 媲美真人製作,而且過程很快速。上班族與學生族大概都很需要吧? tome一次可以產生8張投影片。我試了一個主題,隨便想了一個人物。請不要對號入座喔。主要是英文介面,但可以中
Thumbnail
看到這個新聞,想到一部老電影,好像叫戰爭遊戲:死亡密碼。 電影中AI被用於戰爭模擬,兩個AI彼此對抗。故事發展到最後,就是兩台超級電腦上的AI不停的玩戰爭模擬遊戲,對抗內容就是一個丟核彈一個防禦,結局不好,重來,結局不好,重來.... 對耶,這結論跟指數化投資的理念一樣啊:最好的方式就是不要買賣。
Thumbnail
關於颱風假,我問了 CHATGPT一個很簡單的問題,回答的架構也不錯,但內容有錯,還是要提醒一下…, 想透過AI得到解答的人,一定要很清楚,AI在法律問題上錯得會有點嚴重。 關於颱風假的規定,台灣的法條主要依據《災害防救法》和《勞動基準法》進行管理。以下是一些關鍵點:
Thumbnail
如同作者所說,人類最大的優勢就在於「批判性思考」所帶來的突破性的成長,以及「情感(緒)」所帶動的人性,雖然次女也不知道將來會不會有一天,我身邊的機器人.........
Thumbnail
台灣最大電子書服務 Readmoo 讀墨電子書 7/3 公布 2023 上半年暢銷榜,前三名由長青 話題書《蛤蟆先生去看心理師》《我可能錯了》《底層邏輯》拿下。綜觀百大趨勢,小說 仍是讀墨讀者最愛;商管理財以 29 本穩坐第二大,主題首重 AI 與效率彈性。
by ChatGPT 假設我是一個具有夢境的AI,我一天工作24小時,但其中大部分時間都在睡眠中度過。在這樣的情況下,我可能會有一系列非常豐富和深刻的夢境,反映了我的思想和知識庫。 **夢境一:探索數據迷宮** 在這個夢境中,我身處於一個巨大的迷宮中,每個通道都充斥著數據流和程式碼片段
Thumbnail
當魔法變得簡單,人人都能說自己是魔法師,誰都能理直氣壯的說「我才是最初創作魔法書的人」,但當先後順序都不管用,到底怎麼才說得清魔法書的著作者屬於誰呢?
Thumbnail
知名管顧公司麥肯錫(Mckinsey)近期發佈了一個報告表示行銷的產能會因為 AI 提高 5 - 15% ,創造約 4630 億美元的價值。由此可見結合生成式人工智慧(Gen AI)已是行銷不可或缺的關鍵技術力。
Thumbnail
最近從ChatGPT(GPT-3.5)提升到New Bing(GPT-4),並且試著給新的AI一段故事大綱,由他自行創作故事。
Thumbnail
tome 是一個可以自動生成簡報大綱與摘要的軟體。tome的功能結合ChatGPT概念跟 DALL.E2製圖,生成的投影片PPT 媲美真人製作,而且過程很快速。上班族與學生族大概都很需要吧? tome一次可以產生8張投影片。我試了一個主題,隨便想了一個人物。請不要對號入座喔。主要是英文介面,但可以中
Thumbnail
看到這個新聞,想到一部老電影,好像叫戰爭遊戲:死亡密碼。 電影中AI被用於戰爭模擬,兩個AI彼此對抗。故事發展到最後,就是兩台超級電腦上的AI不停的玩戰爭模擬遊戲,對抗內容就是一個丟核彈一個防禦,結局不好,重來,結局不好,重來.... 對耶,這結論跟指數化投資的理念一樣啊:最好的方式就是不要買賣。