合成生物學在醫藥領域的應用與發展趨勢

更新於 發佈於 閱讀時間約 7 分鐘

合成生物學(Synthetic Biology)是一門將工程學原理應用於生物系統設計和改造的跨學科技術,擁有設計和構建全新生物系統的潛力。近年來,美國、英國、中國和韓國等國皆積極投入資源推動該領域的發展,旨在加速生物技術創新和產業應用。例如,韓國在2022年推出了「韓國合成生物學計畫」(National Synthetic Biology Initiative),並於2023年宣布投資1,200億韓元(約30億台幣)建設生物質合成代工廠(Biofoundry),以促進生物經濟的發展。預計到2030年,合成生物學產品將普及到人類生活的各個層面,且市場規模在2030至2040年間有望達到每年3.6兆美元。


關鍵技術應用於醫藥領域

合成生物學在醫藥應用中的技術涵蓋基因編輯、細胞控制和生物製造等多個層面,其核心技術包括CRISPR系統、基因電路(Gene Circuits)、框架基底生物體(Chassis Organism)等。此外,新興的全細胞生物感測器(Whole-cell Biosensors)和無細胞生物製造(Cell-free Biomanufacturing)也展現出重要的應用前景。

1. CRISPR基因編輯技術

CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats)系統是合成生物學中最具代表性的基因編輯技術之一,涵蓋CRISPR-Cas9、CRISPRa(CRISPR activation)及CRISPRi(CRISPR interference)。CRISPR-Cas9以其高精確度和效率成為研究基因功能和進行基因修飾的標準工具。研究人員可以使用CRISPR技術刪除、插入或替換基因,模擬人類疾病模型以測試新藥的療效與副作用。例如,CRISPR技術可以幫助建立帶有基因突變的細胞,篩選出與藥物效應相關的重要基因,並促進新藥的開發。


2. 基因電路(Gene Circuits)

基因電路是一種用於控制細胞內基因表現和行為的技術,由一系列帶有特定功能的DNA片段構成,類似於電子電路中的元件組合。透過精密設計,基因電路可以幫助科學家即時監控細胞反應,並且能夠啟動或抑制特定基因的表現。在藥物開發過程中,基因電路可用於篩選符合預期的藥物,進一步加速藥物發現。除此之外,基因電路還可以用於偵測腫瘤微環境中的癌症標誌物,並促使細胞合成治療性蛋白,誘發免疫系統的攻擊反應,實現更精確的疾病治療。


3. 框架基底生物體(Chassis Organism)

框架基底生物體是經過基因工程設計和改造的微生物,如大腸桿菌、酵母菌等,常作為生物製造和研究的載體。這類生物體具備遺傳穩定性和可編程性(programmable),能夠精確控制其代謝途徑以生產治療性蛋白質或其他生物技術產品。框架基底生物體在生物製造中表現出高效率和可擴展性,並可用於個人化醫療,如設計微生物以將藥物精準遞送至患部,或者改造嗜菌體來識別和攻擊抗藥性細菌,應對日益嚴重的抗生素耐藥性問題。


4. 全細胞生物感測器(Whole-cell Biosensors)

全細胞生物感測器結合基因電路和框架基底生物體技術,將細胞改造成探測疾病生物標誌物或環境變化的感測裝置。這項技術應用於疾病的早期診斷與監測,並可提供即時而準確的診斷結果。感測器還可用於篩選出具有高療效且低毒性的藥物候選物,並在病理環境下釋放治療劑以控制疾病進程。隨著技術的進步,全細胞生物感測器已朝向可編程方向發展,提升其在多樣化使用情境下的應用潛力,支持個人化醫療。


5. 無細胞生物製造(Cell-free Biomanufacturing)

無細胞生物製造不依賴於活體細胞,而是利用細胞抽取物來快速合成所需的目標分子。這種技術避免了傳統細胞培養所面臨的增殖和維持等問題,顯著縮短了生產時間並提升反應的可控性。無細胞系統可精確調控反應條件如溫度、pH值和材料濃度,從而提高產物的產量和質量。此技術還減少了生產過程中的碳排放,實現永續生產,同時適用於按需生產,如針對罕見疾病的小批量藥物生產。


raw-image

圖一、醫藥領域之關鍵合成生物學技術


創新案例解析

1.Beam Therapeutics是一家專注於開發基因編輯技術的公司,致力於推動DNA鹼基編輯、RNA編輯及引子編輯(Prime editing)等技術的發展。這些技術能夠避免DNA雙股斷裂情況下進行精確編輯,大幅降低編輯錯誤並提高安全性。Beam還開發了多種基因材料遞送方法,如電穿孔(Electroporation)和脂質奈米顆粒(Lipid Nanoparticles),以提升基因遞送的效率和安全性。

2.Strand Therapeutics則聚焦於開發可編程的mRNA基因電路,用於實現長時間的基因表現調控。這項技術能精準識別需治療的細胞並促使免疫系統反應,有助於提高治療效果。Strand已於2024年展開針對黑色素瘤和乳癌的臨床試驗,並計劃進一步應用於血癌的治療。

3.ArsenalBio利用合成生物學、AI和基因工程技術開發針對實體腫瘤的T細胞療法。其CITE技術(CRISPR Integration of Transgene via Electroporation)是一種非病毒基因遞送方法,能精準插入DNA於T細胞基因體中,減少突變風險並提升基因表現的穩定性。此可編程T細胞在檢測到特定抗原組合時才會啟動,避免對健康細胞的傷害。該公司目前針對卵巢癌和腎細胞癌開展臨床試驗,顯示出在個人化腫瘤治療領域的潛力。


結語

合成生物學技術正以驚人的速度推動醫藥領域的創新發展,從基因編輯到生物製造的應用拓展,為未來醫療帶來突破性變革。隨著技術不斷進步,合成生物學將在改善疾病治療、加速藥物開發和推進個人化醫療方面發揮日益重要的角色。這場技術革命有望重新定義醫療科技的未來,為全球醫療體系提供更多元且精準的解決方案。



資料來源

OUTLOOK 科技發展觀測平台



留言
avatar-img
留言分享你的想法!
avatar-img
Hugo的科學與信仰之旅
0會員
19內容數
探索生醫與半導體領域的最新進展以及個人對信仰的感觸
2024/12/06
大型多模態模型(LMMs)作為生成式人工智慧的前沿技術,擁有處理語音、文本和圖像等資料的能力,廣泛應用於健康醫療領域,包括疾病診斷和患者管理。然而,這些技術的發展同時帶來倫理和治理挑戰。本文深入探討 LMMs 在醫療領域的應用和挑戰。
2024/12/06
大型多模態模型(LMMs)作為生成式人工智慧的前沿技術,擁有處理語音、文本和圖像等資料的能力,廣泛應用於健康醫療領域,包括疾病診斷和患者管理。然而,這些技術的發展同時帶來倫理和治理挑戰。本文深入探討 LMMs 在醫療領域的應用和挑戰。
2024/11/16
本文分析全球半導體供應鏈的地理集中化問題,特別聚焦於美國、歐洲、臺灣等國策略與發展趨勢。隨著地緣政治、疫情及其他區域危機的影響,各國政府紛紛推行政策以增強供應鏈韌性。文章探討IC設計、晶片製造、半導體設備與材料供應鏈的挑戰,並強調新興市場的重要性及人才培養的緊迫性,以保障未來半導體產業的穩定與創新。
2024/11/16
本文分析全球半導體供應鏈的地理集中化問題,特別聚焦於美國、歐洲、臺灣等國策略與發展趨勢。隨著地緣政治、疫情及其他區域危機的影響,各國政府紛紛推行政策以增強供應鏈韌性。文章探討IC設計、晶片製造、半導體設備與材料供應鏈的挑戰,並強調新興市場的重要性及人才培養的緊迫性,以保障未來半導體產業的穩定與創新。
2024/10/31
隨著人們對健康的重視日益增加,運動參與率逐年攀升,運動醫療需求也快速增長。美國每年有360萬名兒童因運動受傷,顯示運動傷害對醫療需求的重要性。運動醫療產品從義肢到植入物不斷創新,且新技術如3D列印和智慧手術的發展,讓運動醫療面貌煥然一新。本文探討運動醫療市場的現狀及創新,並展望未來市場的成長潛力。
Thumbnail
2024/10/31
隨著人們對健康的重視日益增加,運動參與率逐年攀升,運動醫療需求也快速增長。美國每年有360萬名兒童因運動受傷,顯示運動傷害對醫療需求的重要性。運動醫療產品從義肢到植入物不斷創新,且新技術如3D列印和智慧手術的發展,讓運動醫療面貌煥然一新。本文探討運動醫療市場的現狀及創新,並展望未來市場的成長潛力。
Thumbnail
看更多
你可能也想看
Thumbnail
TOMICA第一波推出吉伊卡哇聯名小車車的時候馬上就被搶購一空,一直很扼腕當時沒有趕緊入手。前陣子閒來無事逛蝦皮,突然發現幾家商場都又開始重新上架,價格也都回到正常水準,估計是官方又再補了一批貨,想都沒想就立刻下單! 同文也跟大家分享近期蝦皮購物紀錄、好用推薦、蝦皮分潤計畫的聯盟行銷!
Thumbnail
TOMICA第一波推出吉伊卡哇聯名小車車的時候馬上就被搶購一空,一直很扼腕當時沒有趕緊入手。前陣子閒來無事逛蝦皮,突然發現幾家商場都又開始重新上架,價格也都回到正常水準,估計是官方又再補了一批貨,想都沒想就立刻下單! 同文也跟大家分享近期蝦皮購物紀錄、好用推薦、蝦皮分潤計畫的聯盟行銷!
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
若從限制酶(restriction endonuclease)發現(1970)的時代開始算起,人類「玩」基因,或者說,改變基因序列、進行「基因工程」的歷史已有數十年。最近的CRISPR更是膾炙人口! 從這一期《自然》期刊熱騰騰剛剛出爐的基因編輯神器是:IS110!
Thumbnail
若從限制酶(restriction endonuclease)發現(1970)的時代開始算起,人類「玩」基因,或者說,改變基因序列、進行「基因工程」的歷史已有數十年。最近的CRISPR更是膾炙人口! 從這一期《自然》期刊熱騰騰剛剛出爐的基因編輯神器是:IS110!
Thumbnail
CRISPR Therapetics 是一家以基因編輯療法為主打的生物科技公司,去年 FDA 批准該公司基因編輯療法 CASGEVY,用以治療鐮刀型貧血症,華爾街日報形容,此讓「基因編輯革命從實驗室走向市場」。這就是它的投資故事,而在該療法獲批准後的第一個季度,述說的是怎麼樣的情況,我們一起來看看…
Thumbnail
CRISPR Therapetics 是一家以基因編輯療法為主打的生物科技公司,去年 FDA 批准該公司基因編輯療法 CASGEVY,用以治療鐮刀型貧血症,華爾街日報形容,此讓「基因編輯革命從實驗室走向市場」。這就是它的投資故事,而在該療法獲批准後的第一個季度,述說的是怎麼樣的情況,我們一起來看看…
Thumbnail
AI智慧的發展,彷彿核子科技,其在風險可控範圍內應用,妥適運用人機協作,可為人類帶來利益,但如遭濫用,用於侵犯普世價值的目的上,則可能招來毀滅人類的風險。
Thumbnail
AI智慧的發展,彷彿核子科技,其在風險可控範圍內應用,妥適運用人機協作,可為人類帶來利益,但如遭濫用,用於侵犯普世價值的目的上,則可能招來毀滅人類的風險。
Thumbnail
2016/10/2-10/8   今年的諾貝爾獎,化學:「分子機器的設計與合成」、醫學:「細胞自噬機制」、物理:「用數學上的拓朴原理來解釋物質相變」。人類歷史上,習慣用圖騰與儀式來凝聚群眾的心力,廣大的智慧與力量,早已深藏在微小的世界裡。     「溝通不便、專業不明、金額巨大」造成
Thumbnail
2016/10/2-10/8   今年的諾貝爾獎,化學:「分子機器的設計與合成」、醫學:「細胞自噬機制」、物理:「用數學上的拓朴原理來解釋物質相變」。人類歷史上,習慣用圖騰與儀式來凝聚群眾的心力,廣大的智慧與力量,早已深藏在微小的世界裡。     「溝通不便、專業不明、金額巨大」造成
Thumbnail
矽光子產業概念 及矽光子/CPO 概念股
Thumbnail
矽光子產業概念 及矽光子/CPO 概念股
Thumbnail
人工智能(AI)已經在醫療保健領域引發了一場革命,並成為拯救生命的關鍵技術。本文將深入探討AI在醫療保健中的應用,包括在醫學影像分析、個性化醫療和基因研究,以及醫療機器人和手術自動化方面的發展。 AI在醫學影像分析中的應用 1. 癌症診斷: AI能夠分析醫學影像,幫助醫生檢測和診斷癌症。它可以快
Thumbnail
人工智能(AI)已經在醫療保健領域引發了一場革命,並成為拯救生命的關鍵技術。本文將深入探討AI在醫療保健中的應用,包括在醫學影像分析、個性化醫療和基因研究,以及醫療機器人和手術自動化方面的發展。 AI在醫學影像分析中的應用 1. 癌症診斷: AI能夠分析醫學影像,幫助醫生檢測和診斷癌症。它可以快
Thumbnail
人類創造GPT,GPT創造電腦。 超越界限的藍圖 人類創造了語言模型(LLM)GPT,這一巨大的突破推動了人工智能的進展。 然而,有些科學家開始探討更深層次的問題:「如果GPT能夠自我演化,那麼是否能夠利用GPT設計出晶片,並創造出更強大的電腦?」 這個設想引發了人們對於未來的無限遐想和關於人類與技
Thumbnail
人類創造GPT,GPT創造電腦。 超越界限的藍圖 人類創造了語言模型(LLM)GPT,這一巨大的突破推動了人工智能的進展。 然而,有些科學家開始探討更深層次的問題:「如果GPT能夠自我演化,那麼是否能夠利用GPT設計出晶片,並創造出更強大的電腦?」 這個設想引發了人們對於未來的無限遐想和關於人類與技
Thumbnail
■矽光子(SiPh , Silicon photonics) 材料 為了產生光,材料需要具有直接帶隙(direct band gap),才能製造出光源(激光器,光子電路和系統的“電源”)▫ 矽沒有直接帶隙,無法做成雷射光源,得另找材料做光源,因此,其他具有直接帶隙的材料(III-V 材料),例如磷化
Thumbnail
■矽光子(SiPh , Silicon photonics) 材料 為了產生光,材料需要具有直接帶隙(direct band gap),才能製造出光源(激光器,光子電路和系統的“電源”)▫ 矽沒有直接帶隙,無法做成雷射光源,得另找材料做光源,因此,其他具有直接帶隙的材料(III-V 材料),例如磷化
Thumbnail
利用超級電腦計算,呈現出新冠病毒樣貌已精細到原子層級;科學家也找到新冠病毒最愛入侵哪些種類細胞。這些基礎研究都有助於我們更加瞭解這種病毒,即使未來再有什麼莫名其妙的突變,人類的反應速度也會更快。
Thumbnail
利用超級電腦計算,呈現出新冠病毒樣貌已精細到原子層級;科學家也找到新冠病毒最愛入侵哪些種類細胞。這些基礎研究都有助於我們更加瞭解這種病毒,即使未來再有什麼莫名其妙的突變,人類的反應速度也會更快。
Thumbnail
我到步道咖啡館閱讀感觀增強科技這個章節時,我思考可以從這個章節得到什麼?學到什麼?閱讀過後,我想,可以了解的是:目前感觀科技應用的領域、實際應用案例、進化後所引發的新趨勢、人機結合所引發的個資隱私揭露、最後是資源取得不均所帶來的道德爭議,這裡就以書中的案例整理給大家。 書中提到:我們不斷的改變周遭
Thumbnail
我到步道咖啡館閱讀感觀增強科技這個章節時,我思考可以從這個章節得到什麼?學到什麼?閱讀過後,我想,可以了解的是:目前感觀科技應用的領域、實際應用案例、進化後所引發的新趨勢、人機結合所引發的個資隱私揭露、最後是資源取得不均所帶來的道德爭議,這裡就以書中的案例整理給大家。 書中提到:我們不斷的改變周遭
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News