付費限定

Reshape Data: Melt 融合不同的資料欄位_Intro to Pandas

閱讀時間約 7 分鐘

題目敘述

題目會給定一個pandas DataFrame作為輸入,要求我們以原有的資料表為基礎,融合不同的資料欄位。

以product作為index,融合quarter_1,quarter_2,quarter_3,quarter_4 這四個欄位,並且重新命名為quarter,並且將數值欄位名稱重新命名為sales。


題目的原文敘述


測試範例

Example 1:

Input:
+-------------+-----------+-----------+-----------+-----------+
| product | quarter_1 | quarter_2 | quarter_3 | quarter_4 |
+-------------+-----------+-----------+-----------+-----------+
| Umbrella | 417 | 224 | 379 | 611 |
| SleepingBag | 800 | 936 | 93 | 875 |
+-------------+-----------+-----------+-----------+-----------+
Output:
+-------------+-----------+-------+
| product | quarter | sales |
+-------------+-----------+-------+
| Umbrella | quarter_1 | 417 |
| SleepingBag | quarter_1 | 800 |
| Umbrella | quarter_2 | 224 |
| SleepingBag | quarter_2 | 936 |
| Umbrella | quarter_3 | 379 |
| SleepingBag | quarter_3 | 93 |
| Umbrella | quarter_4 | 611 |
| SleepingBag | quarter_4 | 875 |
+-------------+-----------+-------+
Explanation:
The DataFrame is reshaped from wide to long format. Each row represents the sales of a product in a quarter.

以product作為index,融合quarter_1,quarter_2,quarter_3,quarter_4 這四個欄位,並且重新命名為quarter,
並且將數值欄位名稱重新命名為sales。

演算法

以行動支持創作者!付費即可解鎖
本篇內容共 3024 字、0 則留言,僅發佈於Intro. to Pandas 入門題解你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
86會員
425內容數
由有業界實戰經驗的演算法工程師, 手把手教你建立解題的框架, 一步步寫出高效、清晰易懂的解題答案。 著重在讓讀者啟發思考、理解演算法,熟悉常見的演算法模板。 深入淺出地介紹題目背後所使用的演算法意義,融會貫通演算法與資料結構的應用。 在幾個經典的題目融入一道題目的多種解法,或者同一招解不同的題目,擴展廣度,並加深印象。
留言0
查看全部
發表第一個留言支持創作者!
題目敘述 題目會給定一個pandas DataFrame作為輸入,要求我們以原有的資料表為基礎,將資料表做樞紐轉換,垂直方向是月份,水平方向是不同的城市,而表格內容是該城市在某個月份的溫度。 題目的原文敘述 測試範例 Example 1: Input: +--------------+-
題目敘述 題目會給定兩個pandas DataFrame作為輸入,要求我們將兩張資料表,依照原有的順序串接在一起。 題目的原文敘述 測試範例 Example 1: Input: df1 +------------+---------+-----+ | student_id | name
題目敘述 題目會給定一個pandas DataFrame作為輸入,要求我們在原有的資料表上,將所有在欄位quantity的缺失值填補為0。 題目的原文敘述 測試範例 Example 1: Input:+-----------------+----------+-------+ | nam
題目敘述 題目會給定一個pandas DataFrame作為輸入,要求我們在原有的資料表上,將欄位grade的資料型別從原本的float變更為int整數型別。 題目的原文敘述 測試範例 Example 1: Input: DataFrame students: +------------
題目敘述 題目會給定一個pandas DataFrame作為輸入,要求我們在原有的資料表上,將所有的column資料欄位名稱重新命名。 id 改名為 student_id first 改名為 first_name last 改名為 last_name age 改名為 age_in_year
題目敘述 題目會給定一個pandas DataFrame作為輸入,要求我們以原有的資料表salary欄位為基準,把每一筆資料的薪水salary欄位值更新為原本的兩倍。 題目的原文敘述 測試範例 Example 1: Input: DataFrame employees +--------
題目敘述 題目會給定一個pandas DataFrame作為輸入,要求我們以原有的資料表為基礎,將資料表做樞紐轉換,垂直方向是月份,水平方向是不同的城市,而表格內容是該城市在某個月份的溫度。 題目的原文敘述 測試範例 Example 1: Input: +--------------+-
題目敘述 題目會給定兩個pandas DataFrame作為輸入,要求我們將兩張資料表,依照原有的順序串接在一起。 題目的原文敘述 測試範例 Example 1: Input: df1 +------------+---------+-----+ | student_id | name
題目敘述 題目會給定一個pandas DataFrame作為輸入,要求我們在原有的資料表上,將所有在欄位quantity的缺失值填補為0。 題目的原文敘述 測試範例 Example 1: Input:+-----------------+----------+-------+ | nam
題目敘述 題目會給定一個pandas DataFrame作為輸入,要求我們在原有的資料表上,將欄位grade的資料型別從原本的float變更為int整數型別。 題目的原文敘述 測試範例 Example 1: Input: DataFrame students: +------------
題目敘述 題目會給定一個pandas DataFrame作為輸入,要求我們在原有的資料表上,將所有的column資料欄位名稱重新命名。 id 改名為 student_id first 改名為 first_name last 改名為 last_name age 改名為 age_in_year
題目敘述 題目會給定一個pandas DataFrame作為輸入,要求我們以原有的資料表salary欄位為基準,把每一筆資料的薪水salary欄位值更新為原本的兩倍。 題目的原文敘述 測試範例 Example 1: Input: DataFrame employees +--------
你可能也想看
Google News 追蹤
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
美國總統大選只剩下三天, 我們觀察一整週民調與金融市場的變化(包含賭局), 到本週五下午3:00前為止, 誰是美國總統幾乎大概可以猜到60-70%的機率, 本篇文章就是以大選結局為主軸來討論近期甚至到未來四年美股可能的改變
Thumbnail
Faker昨天真的太扯了,中國主播王多多點評的話更是精妙,分享給各位 王多多的點評 「Faker是我們的處境,他是LPL永遠繞不開的一個人和話題,所以我們特別渴望在決賽跟他相遇,去直面我們的處境。 我們曾經稱他為最高的山,最長的河,以為山海就是盡頭,可是Faker用他28歲的年齡...
Thumbnail
聚合函數 可以對資料的筆數、平均、最大、最小和加總的運算,提供查詢結果:如下表示: COUNT(Column):計算筆數,「*」是統計紀錄數。 AVG(Column):計算欄位平均值。 MAX(Column):計算欄位最大值。 MIN(Column):計算欄位最小值。 SUM(Colum
Thumbnail
種類 SQL指令分三大部分: 資料定義語言(Data Definition Language,DDL):建立資料表、索引和檢視表等,和定義資料表的欄位。 資料操作語言(Data Manipulation Language,DML):資料表紀錄查詢、插入、刪除和更新指令。 資料控制語言(Dat
Thumbnail
多條件查詢 AND運算子 SELECT *​ FROM your_table_name WHERE column1 LIKE '_value1%' AND column2 = number​2 OR運算子 SELECT *​ FROM your_table_name WHERE colu
Thumbnail
查詢範圍 指定欄位 SELECT column1, column2, column3,... FROM your_table_name 不重複欄位 SELECT DISTINCT column1 FROM your_table_name 欄位別名 SELECT column1 A
Thumbnail
過往我們有介紹了「【Google Colab Python系列】 資料處理神器 Pandas 起手式」, 相信對於pandas的基本操作具有一定的基礎知識了, 主要著重在基本的操作, 讓我們快速篩選與分析資料, 但真實的世界是有可能具有很多類型的資料集分別儲存, 而不同的資料集又具有一些相似度, 需
Thumbnail
在Data Driven行銷Part 中提及到Data Driven行銷已經成為了一種必要的策略。透過數據驅動的策略,企業可以更準確地預測市場趨勢,更有效地分配資源,並更精確地衡量行銷效果。
Thumbnail
Data-Driven Marketing 已成為行銷人必須掌握的關鍵手法。這種行銷模式是以客戶資料為基礎,透過數據分析來驅動行銷策略的製定和實施。這種模式讓我們能更精準地理解客戶需求,並最大化行銷效益。
Thumbnail
懶人包重點整理 1. Revenue YOY growth rate呈現V轉提高至了88%,margin rate仍舊維持在75%上下,完全符合高成長公司的水準。 2. 消費超過100k/per year的客戶成長了93%,即使大部分來自於原來的客戶但是證明了客戶對產品的滿意度極高,藉此可引來更
Thumbnail
當前大多數的雲端軟體均建立在複雜的Tech stack之上,因此在解決問題前常常需要花費大量的時間找到原因,相信許多業內的工程師或者是IT人員都曾經歷過花費數小時找到原因卻只花短短的時間解決問
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
美國總統大選只剩下三天, 我們觀察一整週民調與金融市場的變化(包含賭局), 到本週五下午3:00前為止, 誰是美國總統幾乎大概可以猜到60-70%的機率, 本篇文章就是以大選結局為主軸來討論近期甚至到未來四年美股可能的改變
Thumbnail
Faker昨天真的太扯了,中國主播王多多點評的話更是精妙,分享給各位 王多多的點評 「Faker是我們的處境,他是LPL永遠繞不開的一個人和話題,所以我們特別渴望在決賽跟他相遇,去直面我們的處境。 我們曾經稱他為最高的山,最長的河,以為山海就是盡頭,可是Faker用他28歲的年齡...
Thumbnail
聚合函數 可以對資料的筆數、平均、最大、最小和加總的運算,提供查詢結果:如下表示: COUNT(Column):計算筆數,「*」是統計紀錄數。 AVG(Column):計算欄位平均值。 MAX(Column):計算欄位最大值。 MIN(Column):計算欄位最小值。 SUM(Colum
Thumbnail
種類 SQL指令分三大部分: 資料定義語言(Data Definition Language,DDL):建立資料表、索引和檢視表等,和定義資料表的欄位。 資料操作語言(Data Manipulation Language,DML):資料表紀錄查詢、插入、刪除和更新指令。 資料控制語言(Dat
Thumbnail
多條件查詢 AND運算子 SELECT *​ FROM your_table_name WHERE column1 LIKE '_value1%' AND column2 = number​2 OR運算子 SELECT *​ FROM your_table_name WHERE colu
Thumbnail
查詢範圍 指定欄位 SELECT column1, column2, column3,... FROM your_table_name 不重複欄位 SELECT DISTINCT column1 FROM your_table_name 欄位別名 SELECT column1 A
Thumbnail
過往我們有介紹了「【Google Colab Python系列】 資料處理神器 Pandas 起手式」, 相信對於pandas的基本操作具有一定的基礎知識了, 主要著重在基本的操作, 讓我們快速篩選與分析資料, 但真實的世界是有可能具有很多類型的資料集分別儲存, 而不同的資料集又具有一些相似度, 需
Thumbnail
在Data Driven行銷Part 中提及到Data Driven行銷已經成為了一種必要的策略。透過數據驅動的策略,企業可以更準確地預測市場趨勢,更有效地分配資源,並更精確地衡量行銷效果。
Thumbnail
Data-Driven Marketing 已成為行銷人必須掌握的關鍵手法。這種行銷模式是以客戶資料為基礎,透過數據分析來驅動行銷策略的製定和實施。這種模式讓我們能更精準地理解客戶需求,並最大化行銷效益。
Thumbnail
懶人包重點整理 1. Revenue YOY growth rate呈現V轉提高至了88%,margin rate仍舊維持在75%上下,完全符合高成長公司的水準。 2. 消費超過100k/per year的客戶成長了93%,即使大部分來自於原來的客戶但是證明了客戶對產品的滿意度極高,藉此可引來更
Thumbnail
當前大多數的雲端軟體均建立在複雜的Tech stack之上,因此在解決問題前常常需要花費大量的時間找到原因,相信許多業內的工程師或者是IT人員都曾經歷過花費數小時找到原因卻只花短短的時間解決問