數據分析|成為數據分析師的第一堂課,Google 破壞大學學位計畫

閱讀時間約 10 分鐘
Franki Chamaki
不知道大家曾經上過哪些線上平台的課程,我自己是許多線上課程的學生,包含Coursera、Udemy、Hahow、大大學院、Matertalk和商業思維學院;關於特定主題的程式與英文,也曾在 Alpha Camp、六角學院和Voicetube 上過課。你問我為什麼會報名那麼多課,比起知識焦慮,不如說是在離開體制內的教育後,發現自己在目標職涯所具備的技能與知識,有很大的不足需要填補,而這些卻也是過去大學課程和現在職場上,沒有提供的。為了能更勝任自己的職務和提高個人在市場的價值,展開「自學」這條路,也開始了解到「活到老,學到老」的目的與真諦。

PS:之後會以學生的角色,寫一篇關於各家線上課程平台的比較與分享。
《商業思維學院官網》https://bizthinking.com.tw/
《小克の專屬折扣碼》點擊連結註冊商業思維,立即獲得優惠折扣碼!
透過邀請連結入學《商業思維學院》,購買指定方案即領6個學習貝獎勵(價值$600元)!
VUCA的高變動性時代,除了網路蓬勃發展,資訊取得更加觸手可及,也讓未來社會所需要的技能和工作型態,產生許多新業態,過往體制內的科系,遠不足以應付未來世界的工作職能,而Google則根據未來市場急需且「高成長、高收益的工作」,推出3大數位學程,分別是數據分析(Data Analytics)、專案管理(Project Management)以及 UX 設計(User Experience Design)。當應徵 Google 相關職位時,課程證書將等同大學畢業證書。
這次我報名了數據分析(data analytics)學程,並且和一群朋友籌組了數據分析學習小組,這些朋友多在公司擔任產品經理、專案經理和技術工程師,我們發現不論是哪類型的職位,甚至在日常生活中,數據分析都是一項必備的技能,協助我們找到問題的肇因、運用數據導向的思維、判斷出最佳的決策,因此我認為建立完整的數據分析概念和知識,是一項非常必要、也非常值得的投資。
Google開設這門課的目的,便是以協助學員成功獲取數據分析師的工作機會
接下來每一週,我都會分享自己在 Google Data Analytics 數據分析學程的筆記與學習心得,除了融會貫通自己的學習內容,也希望對以下三種人有幫助:
  1. 還在觀望這項課程的人
  2. 想要成為數據分析師的人
  3. 想要建立數據分析思維與技能的人
Google Data Analytics 基礎概論 Powered by WEN HUA WANG 小克
我將數據分析的基礎概論,使用心智圖分成五大類別(這是我個人的收斂結果,和原本 Google 的教學大綱不同),分別是:

1.角色:數據分析中的角色、定位與技能
2.目的:數據分析的目的與商業應用
3.流程:數據分析的流程
4.偏誤:數據分析中,可能產生的偏誤
5.工具:資料生命週期和數據分析的工具

一、角色:數據分析中的角色、定位與技能

在開始了解數據分析前,先來說明幾個大家時常搞混的角色、定位與技能:

(一)商業分析師 v.s 數據分析師

商業分析師 v.s 數據分析師 Wen Hua Wang
・商業分析師(Business Analyst,簡稱 BA):
依據商業目的,透過各種手法,包含市場、需求、數據等分析面向,挖掘企業、商業或專案的問題與機會,提出解決方案或策略。
・數據分析師(Data Analyst):
利用資料統計和分析,進行資料探索與預測,產出統計分析報告提供管理層決策使用。


(二) 數據領域中的三大職業

數據領域中的三大職業 Wen Hua Wang
・數據分析師 (Data Analyst):
利用資料統計和分析,進行資料探索與預測,常見的統計軟體例如: SQL、SPSS、R 和 Excel,依據需求設計支援商業或分析的工具,產出統計分析報告提供決策參考或應用,需要能夠操作統計軟體的技能,專注於分析與統計。
・資料工程師(Data Engineer):
利用程式設計資訊架構、環境與平台,依據資料量、儲存條件、資料查詢和分析需求,進行資料爬蟲、資料庫設計、資料處理(清洗、轉換)和資料建模等。需要程式和資料庫設計、巨量資料處理技能,專注資料結構設計、資料清洗和環境建置。
・資料科學家(Data Scientist):
利用演算法、建立模型、資料清洗、資料探勘、機器學習等,從巨量數據中探索與實踐具有價值的產出。需要統計分析、程式設計和相關產業領域的知識,並應用資料以創造商業價值或解決方案。


(三)數據分析中的兩種角色

  1. 數據分析師:Google這門課主要是培養「數據分析師」的技能和思維
(1)五大技能
好奇心:提出對的問題,發掘事物的全貌與核心
了解內容:釐清全貌和已存在或發生的事實
技術思維:具邏輯性的拆解問題、步驟與事物
資料設計:有效組織與規劃資料和產出
資料策略:運用「數據思維」管理資料、工具、流程、利害關係人和策略
(2)六大思維
・可視化:提供易讀易懂的分析結果與產出
・策略:找到或優化如何運用資料解決問題的方法
・問題導向:以解決問題為導向和目的進行資料分析
・關聯性:觀察與思考過程中,資料或各領域間可能的關聯性(不等於因果關係)
・大局觀:拓展視角,以綜觀的角度進行思考和判斷
・注重細節:注重和避免忽略數據分析和問題的細節

2. 利害關係人:
在數據分析的流程,必定會有除了數據分析師外的其他利害關係人,包含提出需求的客戶、相關領域的專家和內部數據團隊的夥伴,每位數據分析師皆需要具備能夠有效與利害關係人溝通、協調和聚焦需求,以產出符合分析需求的成果,這部分的細節會再後續幾堂課說明。(等撰寫完後面的章節,會再將連結附上來)

二、目的:數據分析的目的與商業應用
數據分析的目的,不外乎分成兩大類型:
・解決現況問題
・找到未來機會
從這兩大類型我們可以得知,當我們在進行數據分析前,了解分析的目的、數據使用者和場景,能夠更幫助我們精準的搜集相關資料、設計出符合使用需求的產出。
Adeolu Eletu
以我個人過去的工作為例,曾經老闆向我們團隊提出要在公司導入填寫工時的政策,當時從宣達各部門工時填寫到產出工時報表,整個過程受到各單位強烈的反彈外,連老闆也十分唾棄我們辛辛苦苦收集和產出的工時報表,這項專案失敗的原因有三個:
(一)數據分析目的不明確
(二)缺乏分層管理不同的數據使用者、提供者和領域專家
(三)數據分析應用不明確

重新檢視為什麼老闆提出導入填寫工時的目的和不同的利害關係人,比較好的做法應該是:
(一)釐清和收斂工時填寫的目的與期待的應用
(二)了解公司產能和工時的現況、困難
(三)依據目的和現況,進行資料設計和策略導入
(四)依據老闆、各部門主管、填寫工時的同仁,分層管理需求和導入策略

尤其同一項數據分析的專案,根據不同層級的使用者,也需要相對應呈現不同的分析報告,例如
・老闆:時間寶貴又需要管理整間公司,分析報告需要能夠快速掌握到公司營運的重大方針或缺失,易讀易懂的視覺化和重點式報告最適合
・部門主管:需要能快速掌握部門、專案和團隊重大議題或狀況,因此適合可彈性操作的儀表板


三、流程:數據分析的流程

不同產業、公司或分析目的的流程也都會有些差異,流程的目的並不是遵守,而是能協助執行數據分析的過程中,更有效地達到目的。
數據分析流程@google
以下是 Google 內部所使用的數據分析流程,而 Google 數據分析(Data Analytics)學程,便是依據數據分析流程作為課綱,階段性教學有哪些工具、知識和場景。

(一)詢問:了解目的、問題和其他相關資訊,包含專業知識與現況盤點
(二)準備:前置作業準備,例如資料收集和管理、利害關係人權責
(三)處理:資料處理,包含清洗、轉換和建立資料集
(四)分析:透過各式工具、模型進行分析和產出
(五)分享:向數據使用者發表分析結果
(六)行動:根據數據分析進行決策與行動擬定


四、偏誤:數據分析中,可能產生的偏誤

Dahiana Waszaj
當我們決定利用數據分析來進行決策,其中一項原因就是希望能夠是盡量「客觀」與「中立」,因此確保在資料收集、處理和分析中避免偏誤非常重要。數據分析中的偏誤有非常多種,這裡提供幾項給各位做參考:

(一) 確認性偏誤( Confirmation Bias)
當人們選擇性收集資訊或帶有偏見解讀資訊時,便會產生確認偏誤。
(二)解釋性偏誤( Interpretive Bias )
由非客觀資料或人們主觀感受所建立的資訊,導致「不理性」的結果。
(三)資訊性偏誤( Information Bias)
收集資料過程,因為收集方式不當或限制使得測量產生誤差,導致的偏誤。


五、工具:資料生命週期和數據分析工具

(一)資料生命週期

因為資料會涉及時效性、隱私和權責等議題,所以當我們在使用資料時,必須了解資料的生命週期,進行妥善的運用,才能避免使用偏誤、隱私和法律等問題。
資料生命週期 @ google

1. 計畫:根據資料使用目的,規劃資料範疇、使用和流程。
2. 收集:依循收集範疇進行資料獲取。
3. 管理:管理資料工具、使用權限、安全性和保存。
4. 分析:資料分析。
5. 封存:將資料封存或銷毀。
6. 銷毀:根據規範以決定是否需銷毀資料。


(二)數據分析工具

Google 數據分析(Data Analytics)學程中,會教大家如何使用 Google Sheet 和 R 來進行數據分析,而 Google 在2019年也收購 Looker 作為管理資料集和視覺化分析的應用工具。
Looker
目前業界較為廣泛使用的是 Excel、Tableau 和 Python,而我自己較擅長使用的是 Excel 和 Power BI,相信未來加上數據分析學程的知識學習,可以協助我在資料處理與應用上,更上一層樓。
Microsoft
不論你是對於數據分析有興趣或是正在考慮是否要報名 Google 數據分析(Data Analytics)學程,接下來我都會持續更新數據分析文章,同時也分享在工作上遇到的實際案例和工具分享;也歡迎在數據分析領域的專家,不吝提出建議與指教。
若喜歡這系列文章,歡迎愛心💕或收藏📂,給我一點鼓勵,並分享給有興趣的朋友 
有任何建議,歡迎寄信聯絡我:hua.palace@gmail.com

9會員
11內容數
職場觀察|出差旅遊|自我成長 | 食書喫文 | 鑑影賞劇 | 高生產力工具 💼 科技業 · 亞太區市場營銷經理 🧬 高壓工作 · 深度旅遊 · 廣涉生活 💌 whorkation@gmail.com
留言0
查看全部
發表第一個留言支持創作者!
你可能也想看
Google News 追蹤
Thumbnail
本專欄將提供給您最新的市場資訊、產業研究、交易心法、精選公司介紹,以上內容並非個股分析,還請各位依據自身狀況作出交易決策。歡迎訂閱支持我,獲得相關內容,也祝您的投資之路順遂! 每年 $990 訂閱方案👉 https://reurl.cc/VNYVxZ 每月 $99 訂閱方案👉https://re
Thumbnail
在這篇文章中,我會簡要分享關於數據思維,以及從零到一,建立數據思維、分析與應用的參考書單。有不足與建議之處,也歡迎提出討論!
Thumbnail
在昨天的部分,我們交了如何爬取基本面的相關教學,但前兩天的教學都比較屬於一個爬取的動作,並沒有實際拿來進行研究,今天的話,我們就來講解一下當我們爬取到股市的相關資訊後,可能會進行哪些研究吧!!
Thumbnail
最近注意到幾所大學都創建了數據相關的學程或社群,例如中山管院:商業大數據、逢甲資料科學大講堂,也有企業在做推廣(例如國泰金控數數發團隊),覺得現在學生真幸福,不禁回想自己5年前剛入這行時的學習過程…
Thumbnail
離9/7正式開幕已經不遠了 在開幕前決定分析一下試營運的數據 來推估自己大約需要賣多少本書才能繼續維持書店的營運
Thumbnail
本專欄將提供給您最新的市場資訊、產業研究、交易心法、精選公司介紹,以上內容並非個股分析,還請各位依據自身狀況作出交易決策。歡迎訂閱支持我,獲得相關內容,也祝您的投資之路順遂! 每年 $990 訂閱方案👉 https://reurl.cc/VNYVxZ 每月 $99 訂閱方案👉https://re
Thumbnail
在這篇文章中,我會簡要分享關於數據思維,以及從零到一,建立數據思維、分析與應用的參考書單。有不足與建議之處,也歡迎提出討論!
Thumbnail
在昨天的部分,我們交了如何爬取基本面的相關教學,但前兩天的教學都比較屬於一個爬取的動作,並沒有實際拿來進行研究,今天的話,我們就來講解一下當我們爬取到股市的相關資訊後,可能會進行哪些研究吧!!
Thumbnail
最近注意到幾所大學都創建了數據相關的學程或社群,例如中山管院:商業大數據、逢甲資料科學大講堂,也有企業在做推廣(例如國泰金控數數發團隊),覺得現在學生真幸福,不禁回想自己5年前剛入這行時的學習過程…
Thumbnail
離9/7正式開幕已經不遠了 在開幕前決定分析一下試營運的數據 來推估自己大約需要賣多少本書才能繼續維持書店的營運