在空冷散熱之後

更新 發佈閱讀 5 分鐘

隨著新一代Intel Birch Stream-AP的問世,高達500W的TDP,敲碎了空冷散熱的希望。雖然Eagle Stream 與 Birch Stream-SP 350W的負擔,勉強地用EVAC增加吃風面積達到了要求,但是不可避免的讓Heatsink一路的長大。終於,大到了不可接受的地步。

在未來的散熱路線上,Intel提出了三種選擇:
1. Cold Plate 冷板散熱
2. Single-phase immersion cooling 單相浸沒式冷卻
3. Two-phase immersion cooling 二相浸沒式冷卻 (沸騰散熱)
在概念上基本上就是對流散熱和汽化散熱兩者的排列組合

EVAC (Extended Volume Air Cooling)

raw-image

EVAC 是試圖守住全空冷散熱的一次渾身解數的嘗試,能用上的東西全用上了,在傳統Heatsink底下放Vapor chamber, 往上往兩側串熱管,把吃風面積盡可能的張開,但終究還是走到了極限。
在BHS-AP的散熱介紹上,2U Heatsink with HP能撐到400W,2U EVAC能頂到 450W+50W(TBD),500W+則已經是放棄使用空冷了。

Cold Plate Cooling

raw-image

基本上這就是以前說的liquid cooling,但可能是為了避免混淆,我看大家現在比較少用這種說法了。這算是空冷和直接液冷的一種過渡,可能對PC還行,但是對散熱來說是一種不完美的方案。
雖然頭上的冷板能力比起Heatsink來說能力有所增強,體積也小到可以放進1U,但是有它內生的限制。
首先是因為配管方便一般都會做成shadow core (CPU 前後擺)的形式,做成spread core 上面偌大粗的管子會變4根。但是這樣擺,不管是兩側的空冷或是中央的液冷都會受到前方preheat的影響,並不理想。
再來是最大的問題,漏夜。這東西一旦漏夜就很麻煩了,雖然液體只要不用水就不會有導電問題,但是整台機器或是機櫃在那邊滴油......想起來就是場災難。
最後是配管拉出去最後還是得接上CDU,那感覺不如就乾脆用整機液冷了,熱的東西也不是只有CPU。
這你要說空冷液冷優點兼具或是缺點兼備,只能說是看需求決定了。
另外,冷板散熱其實也有二相流版本,散熱效果比起單相又高了一個檔次,同時串聯不受preheat影響,漏氣感覺也還好,也是一種被寄予厚望的散熱方法。

Single-Phase Immersion Cooling

raw-image

看看這靜謐的水面,如此充滿科技感,所謂單相浸沒式就是大家泡在油裡面,用流動帶走熱量。簡單粗暴,也是未來高瓦數散熱路線的主要競爭者之一,和二相式直接競爭。單純比散熱能力,其實比二相式遜色不少,但是在只是更換對流介質的狀況下,以前開發出來的招式,在這個環境中基本可以無縫接軌,頂多就是heatsink開發時要注意一下黏滯性問題。
先來說說好處,在更換介質的狀況下,整個datecenter的體積可以小好幾倍 (當然,他有室外機就是了)

raw-image

再來是無毒,(對,二相式是有毒的),比起二相式現有的選擇只有氟化物,單相式可以選擇油類,相對來說對環境好很多。在單相浸入式方案,Intel分享的廠商有 GRC和submer,台廠目前缺席。

Two-Phase Immersion Cooling

raw-image

利用低沸點的介質,CPU上面掛一個特製的毛細板,把液體加熱到沸騰利用相變化潛熱帶走熱量,最後透過上方冷凝管把氣相重新凝結 (所以它其實也有室外機)。散熱能力為四種之最,但是有兩個重大的問題,一是氟化物是溫室氣體,有毒,二是瓦數不夠高,效果出不來,沒有沸騰的水只是靜態的水。
目前廠商只有LiquidStack,(如此先進的方法,台廠當然再度缺席),但是受到看好的程度不下單相流,緯創甚至直接投資,買了一席董事。比起單相式,二相式算是更新的技術,但不管未來哪一種成為主流,對於傳統空冷散熱工程師都是一次大的更新。不管是哪種,Intel 預估到了2025,datacenter大概會有20%採用liquid cooling方案,大家拭目以待。

留言
avatar-img
留言分享你的想法!
avatar-img
熱流資訊站的沙龍
50會員
48內容數
和工作相關的筆記整理地
2024/12/19
在本文中,我們探討了多種測量溫度的技術,尤其是數位熱感測器(DTS)的運作原理與應用。傳統的熱電偶和電阻溫度計雖然常見,但在小型IC中不具可行性。DTS則利用二極體偏壓與電路設計,提供一種非破壞性的測量方式。文章還分析了DTS的準確性挑戰與改進空間,並討論瞭如何在多核運算下有效測量不同熱點的溫度。
2024/12/19
在本文中,我們探討了多種測量溫度的技術,尤其是數位熱感測器(DTS)的運作原理與應用。傳統的熱電偶和電阻溫度計雖然常見,但在小型IC中不具可行性。DTS則利用二極體偏壓與電路設計,提供一種非破壞性的測量方式。文章還分析了DTS的準確性挑戰與改進空間,並討論瞭如何在多核運算下有效測量不同熱點的溫度。
2022/11/15
某位網友提出了一個疑問: "我目前都是照著晶片的型號上網找datasheet,但大部分我查到的晶片datasheet都沒有詳細寫出功耗,請問一般大家在做模擬的時候是怎麼得到這些資訊的呢? "
Thumbnail
2022/11/15
某位網友提出了一個疑問: "我目前都是照著晶片的型號上網找datasheet,但大部分我查到的晶片datasheet都沒有詳細寫出功耗,請問一般大家在做模擬的時候是怎麼得到這些資訊的呢? "
Thumbnail
2022/11/03
不同於一般室內空調,在恆溫濕度以及排熱量有著更為嚴格的要求,加上AI節電等功能所特化出來的一種產品。 根據冷卻媒介的不同又分成使用冷媒的和使用冷卻水 CRAC, Computer Room Air Conditioner 的縮寫,使用冷媒。 CRAH, Computer Room Air Handl
Thumbnail
2022/11/03
不同於一般室內空調,在恆溫濕度以及排熱量有著更為嚴格的要求,加上AI節電等功能所特化出來的一種產品。 根據冷卻媒介的不同又分成使用冷媒的和使用冷卻水 CRAC, Computer Room Air Conditioner 的縮寫,使用冷媒。 CRAH, Computer Room Air Handl
Thumbnail
看更多
你可能也想看
Thumbnail
隨著 AI 需求上升,用氣冷方式可能有點挑戰,需要 15 兆瓦電力、成本也高、對環境也造成負擔,而美超微的 DLC 直接液冷可用室溫水提供最佳冷卻,對環境影響也較小,只要 10 兆瓦就能為整個資料中心供電,對發電有限的資料中心來說是新世界,因此美超微目標是讓 DLC 直接液冷成為主流解決方案。
Thumbnail
隨著 AI 需求上升,用氣冷方式可能有點挑戰,需要 15 兆瓦電力、成本也高、對環境也造成負擔,而美超微的 DLC 直接液冷可用室溫水提供最佳冷卻,對環境影響也較小,只要 10 兆瓦就能為整個資料中心供電,對發電有限的資料中心來說是新世界,因此美超微目標是讓 DLC 直接液冷成為主流解決方案。
Thumbnail
可提供 0°C ~ -80°C 連續產生 空氣/氮氣 超低溫氣體。 低溫產生機 -80°C超低溫產生機,半導體測試 冷卻的絕佳方案 產品目前測試 IC 低溫測試良率或是加快中空成型機的製程,並提升生產效率,亦可運用於加工冷卻製程的範疇,我們的低溫產生機擁有四個保護機制,分別為高低壓保護、逆
Thumbnail
可提供 0°C ~ -80°C 連續產生 空氣/氮氣 超低溫氣體。 低溫產生機 -80°C超低溫產生機,半導體測試 冷卻的絕佳方案 產品目前測試 IC 低溫測試良率或是加快中空成型機的製程,並提升生產效率,亦可運用於加工冷卻製程的範疇,我們的低溫產生機擁有四個保護機制,分別為高低壓保護、逆
Thumbnail
隨著新一代Intel Birch Stream-AP的問世,高達500W的TDP,敲碎了空冷散熱的希望。雖然Eagle Stream 與 Birch Stream-SP 350W的負擔,勉強地用EVAC增加吃風面積達到了要求,但是不可避免的讓Heatsink一路的長大。終於,大到了不可接受的地步。
Thumbnail
隨著新一代Intel Birch Stream-AP的問世,高達500W的TDP,敲碎了空冷散熱的希望。雖然Eagle Stream 與 Birch Stream-SP 350W的負擔,勉強地用EVAC增加吃風面積達到了要求,但是不可避免的讓Heatsink一路的長大。終於,大到了不可接受的地步。
Thumbnail
其實原篇章名是水冷基本架構,但是現在水冷也走到了直接液冷,為了避免混淆只好把他們區隔一下,這裡提的是較為傳統的冷板散熱,重點加強CPU散熱的類型,比起最新直接液冷類型,顯得比較像是過渡版了。
Thumbnail
其實原篇章名是水冷基本架構,但是現在水冷也走到了直接液冷,為了避免混淆只好把他們區隔一下,這裡提的是較為傳統的冷板散熱,重點加強CPU散熱的類型,比起最新直接液冷類型,顯得比較像是過渡版了。
Thumbnail
電子模組主要由許多電晶體(或積體電路)所組成,在運行過程中會散發熱能,導致元件溫度過高降低產品效能與穩定性,因此會透過增加熱傳導面積的方式,將熱能盡可能的引導到與空氣(或液體)接觸的多面積物體,通常是具有一底板與電子元件(或發熱元件)接觸,將熱能擴散至板上用來增加散熱對流的圓柱狀或鰭片狀特徵,這物體
Thumbnail
電子模組主要由許多電晶體(或積體電路)所組成,在運行過程中會散發熱能,導致元件溫度過高降低產品效能與穩定性,因此會透過增加熱傳導面積的方式,將熱能盡可能的引導到與空氣(或液體)接觸的多面積物體,通常是具有一底板與電子元件(或發熱元件)接觸,將熱能擴散至板上用來增加散熱對流的圓柱狀或鰭片狀特徵,這物體
Thumbnail
因應碳中和議題,汽車工業面臨節能減排與低碳轉型的挑戰,電能直驅車輛發展模式似乎成為降低石油依賴和廢氣的主要途徑。市面上電動車的主要以圓柱型鋰電池作為儲能部件,在保持一定運行效能所需的電池數目會以不同倍率放電,而空間與時間的累積則導致大量熱能產生,將直接影響電池組的運行、壽命、功率與安全性。 動力電池
Thumbnail
因應碳中和議題,汽車工業面臨節能減排與低碳轉型的挑戰,電能直驅車輛發展模式似乎成為降低石油依賴和廢氣的主要途徑。市面上電動車的主要以圓柱型鋰電池作為儲能部件,在保持一定運行效能所需的電池數目會以不同倍率放電,而空間與時間的累積則導致大量熱能產生,將直接影響電池組的運行、壽命、功率與安全性。 動力電池
Thumbnail
空調主機之於空調系統,就像是心臟之於人類,一旦故障或效能降低,是直接對系統造成影響的,因此使用者有必要多了解一些主機相關的知識。
Thumbnail
空調主機之於空調系統,就像是心臟之於人類,一旦故障或效能降低,是直接對系統造成影響的,因此使用者有必要多了解一些主機相關的知識。
Thumbnail
引擎冷卻方式:熱的產生與熱的傳遞 引擎冷卻原理 氣冷引擎 油冷引擎 水冷引擎
Thumbnail
引擎冷卻方式:熱的產生與熱的傳遞 引擎冷卻原理 氣冷引擎 油冷引擎 水冷引擎
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News