付費限定

在SPSS執行多層次中介分析(2)

更新於 發佈於 閱讀時間約 4 分鐘
本次介紹如何透過MLmed進行多層次中介分析,本文將透過不同案例說明如何用SPSS操作多層次中介分析包含1-1-1 模型和2-1-1模型,也會說明加入調節變項案例,還有多重中介變項案例。每個案例都會講解如何操作和判讀報表。社會科學中常收集的資料是多層次(巢套)資料。若使用傳統的中介分析容易忽略樣本之間的相關性,則會導致結果有偏誤,所以多層次中介分析旨在解決此問題,SPSS可以透過MLmed執行此方法,安裝MLmed流程請點我

1-1-1 模型

多層次中介分析1-1-1 模型代表,層次1(自變項)-1(中介變項)-1(依變項),所有變項都屬於層次1,假如資料可以分為層次1(學生)和 層次二(學校)的,而學生巢套在學校裡面,所以可以用層次1(學生)和 層次二(學校)的各做一次的相同的中介分析,看看學生之間(Level 1)的中介作用和學校之間(Level 2)的中介作用是否有差異。MLmed用非常簡單方式檢驗兩個Level 的中介作用。
分析>混合模式>MLmed
以行動支持創作者!付費即可解鎖
本篇內容共 1824 字、0 則留言,僅發佈於統計分析 × 學術生涯你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
你的見面禮 Premium 閱讀權限 只剩下0 小時 0
avatar-img
224會員
124內容數
文章內容以圖像式和步驟化方式,教您如何在各種統計軟體中(例如:SPSS、R和Mplus),執行多種統計方法。此外,我還會分享一些學術和科技新知,幫助您在學術之路上走得更順利。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
心理博士的筆記本 的其他內容
PROCESS macro for SPSS 可以用非常簡單方式使用調節分析。本文將介紹三種類型的變項,還有如何操作最4.2版本的PROCESS macro for SPSS進行調節模式。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
變異數分析(Analysis of Variance, ANOVA)是一種統計分析方法,用於檢驗自變項之間不同水平(或組別)是否存在依變項上具有顯著差異。雙因子就代表說有兩個自變項(也稱為因子)。例如:我們覺得性別和學歷會影響到物理成績,那性別就是因子(男生和女生)/學歷(國小和高中)
多元線性迴歸分析(Multiple regression analysis)是一種統計學方法,用於探索多個解釋變量對一個目標變量的影響。它是建立在線性迴歸分析的基礎上的,多元迴歸分析用於探討多個預測變數及一個依變數之間的關係,並且每個變項都是連續變項。本文將介紹多元迴歸分析概念。
變異數分析(Analysis of Variance, ANOVA)是一種統計分析方法,用於檢驗自變項之間不同水平(或組別)是否存在依變項上具有顯著差異。自變項(也稱為因子)是影響觀察到依變項變化的可能原因,例如:我們覺得性別會影響到物理成績,那性別就是因子(男生和女生),物理成績就是依變項。
找出重複值可以幫助我們瞭解數據集中是否有重複記錄。重複記錄可能是由於數據收集過程中的錯誤或疏忽而造成的。例如,在填寫問卷時,一個人可能會多次填寫相同的資訊,這將導致重複記錄。 重複記錄可能影響分析結果的準確性和可靠性。例如,在統計分析中,重複記錄可能會使平均值、標準差等統計量的計算結果失真。同時,重
科學研究主要檢驗變項之間的因果關係,在確認因果關係時,檢驗中介效應尤為重要,然而,社會科學中常收集的資料是多層次(巢套)資料。若使用傳統的中介分析容易忽略樣本之間的相關性,則會導致結果有偏誤,所以多層次中介分析旨在解決此問題,SPSS可以透過MLmed執行此方法,本文將介紹如何安裝MLmed
PROCESS macro for SPSS 可以用非常簡單方式使用調節分析。本文將介紹三種類型的變項,還有如何操作最4.2版本的PROCESS macro for SPSS進行調節模式。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
變異數分析(Analysis of Variance, ANOVA)是一種統計分析方法,用於檢驗自變項之間不同水平(或組別)是否存在依變項上具有顯著差異。雙因子就代表說有兩個自變項(也稱為因子)。例如:我們覺得性別和學歷會影響到物理成績,那性別就是因子(男生和女生)/學歷(國小和高中)
多元線性迴歸分析(Multiple regression analysis)是一種統計學方法,用於探索多個解釋變量對一個目標變量的影響。它是建立在線性迴歸分析的基礎上的,多元迴歸分析用於探討多個預測變數及一個依變數之間的關係,並且每個變項都是連續變項。本文將介紹多元迴歸分析概念。
變異數分析(Analysis of Variance, ANOVA)是一種統計分析方法,用於檢驗自變項之間不同水平(或組別)是否存在依變項上具有顯著差異。自變項(也稱為因子)是影響觀察到依變項變化的可能原因,例如:我們覺得性別會影響到物理成績,那性別就是因子(男生和女生),物理成績就是依變項。
找出重複值可以幫助我們瞭解數據集中是否有重複記錄。重複記錄可能是由於數據收集過程中的錯誤或疏忽而造成的。例如,在填寫問卷時,一個人可能會多次填寫相同的資訊,這將導致重複記錄。 重複記錄可能影響分析結果的準確性和可靠性。例如,在統計分析中,重複記錄可能會使平均值、標準差等統計量的計算結果失真。同時,重
科學研究主要檢驗變項之間的因果關係,在確認因果關係時,檢驗中介效應尤為重要,然而,社會科學中常收集的資料是多層次(巢套)資料。若使用傳統的中介分析容易忽略樣本之間的相關性,則會導致結果有偏誤,所以多層次中介分析旨在解決此問題,SPSS可以透過MLmed執行此方法,本文將介紹如何安裝MLmed
你可能也想看
Google News 追蹤
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
【碩博士生如何透過「中介效應」理解複雜現象】 ── 1. 直接效應與間接效應 2. 為什麼的思維挑戰 3. 機率與說服力的巧妙運用 在碩博士研究的過程中,我們常常被要求回答「為什麼」──為什麼某種現象發生?為什麼某變數會影響另一變數?萬為綱老師在《精英日課》中,用「中介效應」的概念,清晰地剖
Thumbnail
在資料分析過程中,透過衡量變數之間的線性或非線性關係,能有效探索數據集,篩選出重要特徵,並進行預測建模。本文介紹瞭如何理解數據、使用相關矩陣找出變數關聯性,以及利用互資訊評估變數之間的依賴程度,幫助資料科學家在建模過程中選擇適當的變數,提升模型效果。
Thumbnail
這篇文章討論在心理學領域中,留住個案的重要性,並指出年資和晤談能力並不是留住個案的關鍵。文章主張在當心理師時,不應只依賴學校教育的模式,而應有多元思考、跨系統的合作等不同觀點。作者強調在學習與實務之間存在落差,因此提倡接受整合取向的督導,並在助人技巧的教學中思考如何安心上手。
Thumbnail
本文將展示使用不同激活函數(ReLU 和 Sigmoid)的效果。 一個簡單的多層感知器(MLP)模型來對 Fashion-MNIST 資料集進行分類。 函數定義 Sigmoid 函數 Sigmoid 函數將輸入壓縮到 0到 1 之間: 特性: 輸出範圍是 (0,1)(0, 1)(0,1
瞭解如何透過Regression實作Classification,使用one-hot vector表示不同的類別,並透過乘上不同的Weight和加上不同的bias來得到三個數值形成向量。同時通過softmax的方式得到最終的y'值,並探討使用Cross-entropy來計算類別的loss。
這是一個結合社會計量、心理劇和個別諮商的工作模式。
Thumbnail
一般常見的時間架構分成三個:趨勢級別、分析級別、進場級別。 趨勢級別 週線 or 日線,目的是為了確認整體市場的方向,以及關鍵流動性區域(支撐、壓力位) 分析級別 4H or 1H,目的是確認市場當前方向、公允價值缺口、訂單塊、流動性區域、高期望值交易區域,需要花較多時間來分析。 進場級別
Thumbnail
透過麗鳳督導在心理諮商上的應用,能夠讓我們看待個案問題時有了全新的視角。學理論要浸泡到自動化思考,分析個案時需要考慮家庭結構、互動關係和人際界線等重要元素。此外,心理諮商師需用關係去理解表徵問題,並運用大量的探問與對話,從而從症狀到系統的探索。
Thumbnail
這篇文章以簡單易懂的文字和圖片介紹線性混和效應模型,包含其中的元素和意義。除此之外也透過 R 的實作具體呈現操作時的情況。
Thumbnail
我們常把研究分成量化與質性兩種不同的方法(當然不止這兩種方法),其中量化分析主要在討論變數與變數的關係,而質性分析則在變數間在的互動過程與事件。因此通常在進行質性研究時,我們需要收集大量田野調查或訪談資料。做過訪談的人都知道,訪談後需要反覆的聆聽訪談錄音並將其轉化為訪談逐字稿,這是一個大工程,還好現
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
【碩博士生如何透過「中介效應」理解複雜現象】 ── 1. 直接效應與間接效應 2. 為什麼的思維挑戰 3. 機率與說服力的巧妙運用 在碩博士研究的過程中,我們常常被要求回答「為什麼」──為什麼某種現象發生?為什麼某變數會影響另一變數?萬為綱老師在《精英日課》中,用「中介效應」的概念,清晰地剖
Thumbnail
在資料分析過程中,透過衡量變數之間的線性或非線性關係,能有效探索數據集,篩選出重要特徵,並進行預測建模。本文介紹瞭如何理解數據、使用相關矩陣找出變數關聯性,以及利用互資訊評估變數之間的依賴程度,幫助資料科學家在建模過程中選擇適當的變數,提升模型效果。
Thumbnail
這篇文章討論在心理學領域中,留住個案的重要性,並指出年資和晤談能力並不是留住個案的關鍵。文章主張在當心理師時,不應只依賴學校教育的模式,而應有多元思考、跨系統的合作等不同觀點。作者強調在學習與實務之間存在落差,因此提倡接受整合取向的督導,並在助人技巧的教學中思考如何安心上手。
Thumbnail
本文將展示使用不同激活函數(ReLU 和 Sigmoid)的效果。 一個簡單的多層感知器(MLP)模型來對 Fashion-MNIST 資料集進行分類。 函數定義 Sigmoid 函數 Sigmoid 函數將輸入壓縮到 0到 1 之間: 特性: 輸出範圍是 (0,1)(0, 1)(0,1
瞭解如何透過Regression實作Classification,使用one-hot vector表示不同的類別,並透過乘上不同的Weight和加上不同的bias來得到三個數值形成向量。同時通過softmax的方式得到最終的y'值,並探討使用Cross-entropy來計算類別的loss。
這是一個結合社會計量、心理劇和個別諮商的工作模式。
Thumbnail
一般常見的時間架構分成三個:趨勢級別、分析級別、進場級別。 趨勢級別 週線 or 日線,目的是為了確認整體市場的方向,以及關鍵流動性區域(支撐、壓力位) 分析級別 4H or 1H,目的是確認市場當前方向、公允價值缺口、訂單塊、流動性區域、高期望值交易區域,需要花較多時間來分析。 進場級別
Thumbnail
透過麗鳳督導在心理諮商上的應用,能夠讓我們看待個案問題時有了全新的視角。學理論要浸泡到自動化思考,分析個案時需要考慮家庭結構、互動關係和人際界線等重要元素。此外,心理諮商師需用關係去理解表徵問題,並運用大量的探問與對話,從而從症狀到系統的探索。
Thumbnail
這篇文章以簡單易懂的文字和圖片介紹線性混和效應模型,包含其中的元素和意義。除此之外也透過 R 的實作具體呈現操作時的情況。
Thumbnail
我們常把研究分成量化與質性兩種不同的方法(當然不止這兩種方法),其中量化分析主要在討論變數與變數的關係,而質性分析則在變數間在的互動過程與事件。因此通常在進行質性研究時,我們需要收集大量田野調查或訪談資料。做過訪談的人都知道,訪談後需要反覆的聆聽訪談錄音並將其轉化為訪談逐字稿,這是一個大工程,還好現