用傳統統計分析多層次資料的限制

更新於 發佈於 閱讀時間約 3 分鐘
多層次資料問題指的是在社會科學研究中,我們經常透過問卷以班級或學校為單位進行調查,此時收集到的資料很可能存在著多個層次的結構。這意味著我們觀察到的個體或單位被分類或分群到不同的層次中。本文將簡介此用傳統統計分析多層次資料結構的問題和限制
例如:我們對學生的學業成績進行研究。我們不僅有個別學生的資料,還有學校、班級和縣市等不同層次的資料。這些層次之間可能存在著巢套關係,也就是學生屬於班級,班級屬於學校,學校屬於縣市的層次結構。同個班級/學校/縣市的學業成績可能有很高的相似性。
多層次資料
多層次資料的存在使得傳統的統計方法無法直接應用,因為這些方法通常假設觀察到的資料是獨立的。然而,在多層次資料中,個體之間的觀測可能相互關聯,例如學生的成績可能受到所屬班級或學校的影響。
為了解決這個問題,出現了多層次模型(MLM)或階層線性模式(HLM)。這些模型能夠考慮到多層次資料的結構,並在分析中引入階層結構的效應。通過建立階層模型,我們可以進一步瞭解不同層次對於觀察結果的影響程度,並進行更準確的統計推論。
總結來說,多層次資料問題是可能違反資料獨立性的假設。MLM或HLM則是用於處理這種問題的統計方法,能夠更好瞭解層次結構對研究結果的影響。
下面的圖很好展現多層次資料的問題,如果我們沒有將各群組區分出來,就將全部樣本拿去跑迴歸分析,就會發現V2和V1的是負向相關(黑線),反之,如果我們將各個群組區分出來(A~J),就會發現各組的V2和V1呈現正向關聯(不同顏色的線)。
來源:https://easystats.github.io/blog/posts/correlation_multilevel/
在心理學研究中,我們確實意識到個體的行為不僅受到自身特質的影響,還受到周圍環境和脈絡的影響。這些脈絡特性包括文化、社會互動和他人的行為,它們都可能對個體的行為和心理過程產生重要影響。
如果研究者忽略這些脈絡特性,僅僅假設資料之間是相互獨立的,並使用傳統的統計方法進行分析,那麼就有可能產生偏差的結果。這種偏差可能導致型一誤差的產生,也就是誤判了研究結果的統計顯著性。
多層次模型(HLM)或階層線性模式(MLM)在這種情況下就非常有用了。這些模型可以考慮到個體間的相互依賴關係,並且能夠結合個體層次和群體層次的資料進行分析。透過這樣的模型,研究者可以同時考慮到個體和脈絡特性之間的關係,進一步了解個體行為的多重因素。如果對分析有興趣,可以看接下來一系列的更詳細多層次分析介紹和統計操作文章(請點我)。
心理學研究已經證明了個體的行為受到脈絡特性的重要影響。若忽略這些特性並僅假設資料間相互獨立,使用傳統統計方法進行分析,可能導致偏差的結果。MLM或HLM考慮到個體間的相互依賴關係,能更好地處理這種情況
您的研究遇到了統計分析的困難嗎?您需要專業的統計諮詢和代跑服務嗎?請點我看提供的服務
avatar-img
224會員
124內容數
文章內容以圖像式和步驟化方式,教您如何在各種統計軟體中(例如:SPSS、R和Mplus),執行多種統計方法。此外,我還會分享一些學術和科技新知,幫助您在學術之路上走得更順利。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
心理博士的筆記本 的其他內容
當我們透過潛在類別/剖面/混合分析找出最佳組數後,研究者可能會好奇,這些組數在其它變項是否有差異?事後比較就顯得相當重要,本文將簡介潛在類別/剖面/混合分析事後比較。
Mplus 是一套統計軟體,可用於各種心理學和社會科學研究。它具有強大的功能,可用於進行複雜的統計分析,例如潛在變數分析、多層次分析和縱向分析。要開始使用 Mplus,您需要先下載並安裝軟體。安裝 Mplus 後,您就可以開始編寫 Mplus 語法。Mplus 語法是用來告訴軟體如何進行分析的程式碼
潛在類別模式(latent class modeling, LCM)和潛在剖面分析(Latent Profile Analysis, LPA)是探討潛在類別變項的統計技術。兩者與因素分析最大的不同在於潛在變項(因素)的形式。本文將介紹潛在類別/剖面/混合分析操作1:找出最佳組數
縱貫式中介模型(Longitudinal Mediation Model)是研究隨著時間的改變,變數X如何通過中介變數M影響變數Y的統計模型。它是長期觀察和分析數據的有用工具,可以揭示X和Y之間的關係以及中介變數M在這個關係中扮演的角色。本文將介紹縱貫式中介模型Mplus操作
當我們要確定問卷量表在不同群體(例如:男生和女生)的適用和一致性時,我們就使用多群組測量衡等性檢驗在不同群體,因素和觀察變項之間的關聯是一致。則代表之後統計結果是可信的,反映出真實結果,並非只是量表誤差造成的。
驗證性因素分析(Confirmatory Factor Analysis, CFA)常被作為檢驗量表或測量工具之建構效度。做SEM前大多會要求每個工具的CFA結果。不僅如此,CFA也可能拿來檢驗測量衡等性的有效工具。本文將簡介驗證性因素分析概念,並介紹如何用Mplus 操作。
當我們透過潛在類別/剖面/混合分析找出最佳組數後,研究者可能會好奇,這些組數在其它變項是否有差異?事後比較就顯得相當重要,本文將簡介潛在類別/剖面/混合分析事後比較。
Mplus 是一套統計軟體,可用於各種心理學和社會科學研究。它具有強大的功能,可用於進行複雜的統計分析,例如潛在變數分析、多層次分析和縱向分析。要開始使用 Mplus,您需要先下載並安裝軟體。安裝 Mplus 後,您就可以開始編寫 Mplus 語法。Mplus 語法是用來告訴軟體如何進行分析的程式碼
潛在類別模式(latent class modeling, LCM)和潛在剖面分析(Latent Profile Analysis, LPA)是探討潛在類別變項的統計技術。兩者與因素分析最大的不同在於潛在變項(因素)的形式。本文將介紹潛在類別/剖面/混合分析操作1:找出最佳組數
縱貫式中介模型(Longitudinal Mediation Model)是研究隨著時間的改變,變數X如何通過中介變數M影響變數Y的統計模型。它是長期觀察和分析數據的有用工具,可以揭示X和Y之間的關係以及中介變數M在這個關係中扮演的角色。本文將介紹縱貫式中介模型Mplus操作
當我們要確定問卷量表在不同群體(例如:男生和女生)的適用和一致性時,我們就使用多群組測量衡等性檢驗在不同群體,因素和觀察變項之間的關聯是一致。則代表之後統計結果是可信的,反映出真實結果,並非只是量表誤差造成的。
驗證性因素分析(Confirmatory Factor Analysis, CFA)常被作為檢驗量表或測量工具之建構效度。做SEM前大多會要求每個工具的CFA結果。不僅如此,CFA也可能拿來檢驗測量衡等性的有效工具。本文將簡介驗證性因素分析概念,並介紹如何用Mplus 操作。
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
本文討論了在程度不一的班級中,利用分組學習促進學生互相幫助的策略。雖然程度較好的學生可能在小組任務中主導,但這樣的安排也可能導致程度較差的學生無法充分參與。作者提出了分組合作面臨的挑戰,包括溝通不良和學習動機的差異,並建議透過讓學生自我選擇組別來提高合作效果,以促進更良好的學習環境。
Thumbnail
在資料分析過程中,透過衡量變數之間的線性或非線性關係,能有效探索數據集,篩選出重要特徵,並進行預測建模。本文介紹瞭如何理解數據、使用相關矩陣找出變數關聯性,以及利用互資訊評估變數之間的依賴程度,幫助資料科學家在建模過程中選擇適當的變數,提升模型效果。
Thumbnail
假設您目前即將接任教務主任一職,您想要知道甲班與乙班的學生在整個學期中的學習成果,是甲班較出色,還是乙班的同學較認真?此時,身為教務主任的您,在收集了學生的學期成績後,要如何進行比較,才能公平的判斷出兩班同學的程度差異及同一班的學生,普遍程度都落在哪個成績水準上? 要得到這個問題的答案,最好的方法
Thumbnail
社群媒體會導致「過濾氣泡」和「同溫層效應」。也就是說,這只會讓用戶只看到符合其既有觀點和興趣的內容,從而錯過多樣化的信息。 如果要做出更妥善的市場判斷,除了需要在即時的數據和長期的品牌價值之間找到平衡,也要提醒大家要及時『抽身』回到真實的世界中,才能避免陷入數據迷戀和演算法偏見。
2-1 取得統計資料 統計學,指的就是搜集、整理、表現及分析資料的方法。 一般來說,當我們想要知道對於某件事,大眾的普遍想法時,我們可能會透過調查的方式,得到想要的答案。也就是說,我們可能透過問卷或者是電訪的方式,直接收集所要的母體資料。舉個例子來說,在總統選舉時,當侯選人舉辦政見發表會後,為了
Thumbnail
透過探討指數級增長、常態分布與冪律分布在選擇行業時的應用,強調了分析邊際成本和市場分布特性的重要性。作者挑戰傳統追隨者思維,提倡創新和尋找獨特優勢,並透過服務業例子展示如何應用這些底層邏輯進行前瞻性決策,幫助讀者識別增長機會,制定成功策略。
社會計量測試最基本的功能在揭示團體成員及帶領者自己的資訊,尤其關注成員間的連結及連結的理由。社會計量測試通常而言,會經歷暖身、行動、分享、分析、未來計畫與處遇等階段
Thumbnail
我們常把研究分成量化與質性兩種不同的方法(當然不止這兩種方法),其中量化分析主要在討論變數與變數的關係,而質性分析則在變數間在的互動過程與事件。因此通常在進行質性研究時,我們需要收集大量田野調查或訪談資料。做過訪談的人都知道,訪談後需要反覆的聆聽訪談錄音並將其轉化為訪談逐字稿,這是一個大工程,還好現
Thumbnail
在生成研究問題,並且對於先行研究進行過一系列的文獻探討之後,研究者可以提出研究假說。會有假說,主要是研究者在提出研究問題的時候,可能心有定見,問題才能成立。上野千鶴子在《如何做好研究論文》一書中,用一個例子來說明如何提出假說。 例如研究者觀察到學生在高中時期經過激烈的考試競爭後上大學,但在上大學後
Thumbnail
第一堂學生創新團隊的點評 我們的統計在社會科學裡面,它到底是怎麼樣產生的,我們今天要算這個統計學,要送統計,他們本身要有Raw data,這樣才有辦法進行運用,如:我們要怎麼算平均身高如下是:   「全部身高」除以「人數」等於 每個人幾公分  所以我們要設計如何用電腦計算 ,要「input」
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
本文討論了在程度不一的班級中,利用分組學習促進學生互相幫助的策略。雖然程度較好的學生可能在小組任務中主導,但這樣的安排也可能導致程度較差的學生無法充分參與。作者提出了分組合作面臨的挑戰,包括溝通不良和學習動機的差異,並建議透過讓學生自我選擇組別來提高合作效果,以促進更良好的學習環境。
Thumbnail
在資料分析過程中,透過衡量變數之間的線性或非線性關係,能有效探索數據集,篩選出重要特徵,並進行預測建模。本文介紹瞭如何理解數據、使用相關矩陣找出變數關聯性,以及利用互資訊評估變數之間的依賴程度,幫助資料科學家在建模過程中選擇適當的變數,提升模型效果。
Thumbnail
假設您目前即將接任教務主任一職,您想要知道甲班與乙班的學生在整個學期中的學習成果,是甲班較出色,還是乙班的同學較認真?此時,身為教務主任的您,在收集了學生的學期成績後,要如何進行比較,才能公平的判斷出兩班同學的程度差異及同一班的學生,普遍程度都落在哪個成績水準上? 要得到這個問題的答案,最好的方法
Thumbnail
社群媒體會導致「過濾氣泡」和「同溫層效應」。也就是說,這只會讓用戶只看到符合其既有觀點和興趣的內容,從而錯過多樣化的信息。 如果要做出更妥善的市場判斷,除了需要在即時的數據和長期的品牌價值之間找到平衡,也要提醒大家要及時『抽身』回到真實的世界中,才能避免陷入數據迷戀和演算法偏見。
2-1 取得統計資料 統計學,指的就是搜集、整理、表現及分析資料的方法。 一般來說,當我們想要知道對於某件事,大眾的普遍想法時,我們可能會透過調查的方式,得到想要的答案。也就是說,我們可能透過問卷或者是電訪的方式,直接收集所要的母體資料。舉個例子來說,在總統選舉時,當侯選人舉辦政見發表會後,為了
Thumbnail
透過探討指數級增長、常態分布與冪律分布在選擇行業時的應用,強調了分析邊際成本和市場分布特性的重要性。作者挑戰傳統追隨者思維,提倡創新和尋找獨特優勢,並透過服務業例子展示如何應用這些底層邏輯進行前瞻性決策,幫助讀者識別增長機會,制定成功策略。
社會計量測試最基本的功能在揭示團體成員及帶領者自己的資訊,尤其關注成員間的連結及連結的理由。社會計量測試通常而言,會經歷暖身、行動、分享、分析、未來計畫與處遇等階段
Thumbnail
我們常把研究分成量化與質性兩種不同的方法(當然不止這兩種方法),其中量化分析主要在討論變數與變數的關係,而質性分析則在變數間在的互動過程與事件。因此通常在進行質性研究時,我們需要收集大量田野調查或訪談資料。做過訪談的人都知道,訪談後需要反覆的聆聽訪談錄音並將其轉化為訪談逐字稿,這是一個大工程,還好現
Thumbnail
在生成研究問題,並且對於先行研究進行過一系列的文獻探討之後,研究者可以提出研究假說。會有假說,主要是研究者在提出研究問題的時候,可能心有定見,問題才能成立。上野千鶴子在《如何做好研究論文》一書中,用一個例子來說明如何提出假說。 例如研究者觀察到學生在高中時期經過激烈的考試競爭後上大學,但在上大學後
Thumbnail
第一堂學生創新團隊的點評 我們的統計在社會科學裡面,它到底是怎麼樣產生的,我們今天要算這個統計學,要送統計,他們本身要有Raw data,這樣才有辦法進行運用,如:我們要怎麼算平均身高如下是:   「全部身高」除以「人數」等於 每個人幾公分  所以我們要設計如何用電腦計算 ,要「input」