每天整理最新的科技投資消息及評論,如要收到最新消息,請訂閱起來:
為什麼要每天更新這些東西,主要跟自己的投資方式相關:
投資方式強調理解個股和市場,而不是立即將事物判斷為「好」或「壞」。我喜歡深入了解每個項目的本質,並將其視為投資決策的重要參考依據。
在製定投資決策時,考慮眾多因素,包括個股本身特質、市場主導機制(Regime)、潛在的下一個市場主導機制、因子曝險(Exposure)、對沖工具等。
對於市場主導機制,看法可能會隨著時間不斷變化,因此難以確定一個確切的觀點。
今天主要搜集了單一基金經理在關注的東西
@GavinSBaker
(1) GPU利用率是任何從事AI的公司的新投資回報率(ROIC)。
(2) 云計算/虛擬化/容器已經將硬件抽象化了一代軟件工程師。現在它們又回來了,並且帶來了更大的影響力。
(3) GPU利用率高的公司可以在更快的上市時間、更好的產品或更低的成本之間進行選擇。
(4) 許多與Google相關的評論 - 如果Google在LAMDA準備就緒時只是發布它,那麼大部分熱情可能都會集中在他們身上。
(5) 對於金融迷來說,這並不完全是新的ROIC。
@GavinSBaker
(1) GPU utilization rate is the new ROIC for any company working on AI.
“In deep learning, nothing is ever just about the equations. It’s how you put them on the hardware, it’s a giant bag of black magic tricks that only very few people have truly mastered.”
(2) Cloud/virtualization/containers have abstracted hardware away for a generation of software engineers. Now back with a vengeance.
The MLPerf storage benchmarks will be a catalyst for storage by showing the massive impact on GPU utilization from faster storage.
(3) A company with higher GPU utilization can choose between faster time to market, a better product or lower costs.
GPU utilization shockingly low at many companies working on AI - both public and private - and one of OpenAI’s biggest advantages.
Lots of Google commentary - most of the oxygen that went to ChatGPT would’ve been theirs had they simply released LAMDA when it was ready.
(5) And yes, for finance nerds, not quite the new ROIC.
Obviously a company with slightly lower GPU utilization (on same numb of GPUs) that creates a much more successful product will have a higher ROIC.