統計急救箱──標準分數

更新於 發佈於 閱讀時間約 4 分鐘

  在知道平均數與標準差之後,就可以進一步了解什麼是所謂的「標準分數」了。

標準分數的公式

  標準分數是一種透過平均數與標準差的組合,將原始分數進行轉換的過程。它的公式是這樣的:

標準分數 (z分數) 的公式

標準分數 (z分數) 的公式

當我們有一群分數,只要將其中某個數值減去整體的平均數,接著再除以整體的標準差,就會得到該數值的標準分數。這個分數有個專門的名字,叫做Z分數。


標準分數與原始分數的關係

  在標準分數的轉換當中,總共做了兩件事情:1. 將分數減去平均數。2. 除以標準差。這兩件事情在數線上,分別對應到了兩個動作:1. 平移。2. 縮放。

Z分數對原始分數做了兩件事

Z分數對原始分數做了兩件事

   當我們把一群數字裡的每一個數值都加上或者減去某個特定值,這個動作就叫做平移。因為每一個數值都有加 / 減相同的數,因此每個數值之間的相對位置並不改變,改變的只有數值的大小。

  例如某次全校段考,數學科某道題目出不好,老師們最後決定此題送分,全校學生數學考試的分數都加3分。那我們即使不去計算全校學生的數學成績,也可以知道全校學生的數學成績平均數增加了3分。而且因為全校都加分,所以並不會造成名次(分數的相對位置)的變化。

  如果把數值依據大小分別排列成一條數線,所謂的平移就是指移動數線上面的刻度。例如下圖當中,當我們把每一個黑色小人的分數都減去5,也就等於是把數線的0點移動到原本5的位置。比較大的橘色人像代表的就是黑色小人的平均數,因此標準分數在數線上的意思就是把原點0移動到平均數的位置(又稱為平減centering)。

平減 / 中心化就是將原點移動到平均數的位置

平減 / 中心化就是將原點移動到平均數的位置

  所以我們知道了對全部分數做加減是移動刻度,但在標準分數的第2個步驟中還有除以某個數,它在數線上面的意義又是什麼呢?

  對全部分數做乘除,其實是將刻度進行縮放。假如將每個分數乘以2,原本是1的分數會變成2,2的分數會變成4,3的分數會變成6......每個分數都是原本的兩倍,但我們會發現這些分數的相對位置仍然沒有改變。這些數值的改變,也可以說是原本的刻度縮減了一半──原先如果是以1公分為單位,每個分數都乘以2就像是把刻度改為0.5公分一樣。於是每個分數的意義,就會從原本的「某長度是1公分的幾倍」變成「某長度是0.5公分的幾倍」。

  例如下圖,將平減後的每個數值都除以標準差,實際上可以視為將分數的尺度改成以標準差為單位。轉換後的分數值,實際上是「標準差的幾倍」的意思。

分數除以標準差,就是改以標準差為刻度

分數除以標準差,就是改以標準差為刻度


標準分數的意義與功用

  經過上面的解釋,標準分數的意義就很清楚了。當我們把某個分數轉換成為標準分數,它的意思就是以平均數為原點,以標準差為單位所計算出的新數值。用更白話的方式說就是:

每個分數距離平均數有多少個標準差的距離。

不過一個分數好端端的幹嘛去轉換成標準分數?

  這是因為在社會科學研究當中,我們會面臨很多單位彼此不同的變數。雖然我們不一定會直接拿它們做四則運算,不過光是對單位不同的數值做描述,就有可能令我們頭痛了。

  例如我有五個人的身高和月收入所得資料如下圖,橘色為平均數。

五個人的身高與月收入資料

五個人的身高與月收入資料

如果今天我不先計算出平均數(請把橘色的部分遮起來),會發現我們很難立刻看出這五個人的身高和收入排名,於是我們先把原點平移到平均數,也就是做平減,結果如下圖。

平減後的身高與月收入資料

平減後的身高與月收入資料

這時候我們可以比較容易看出每個人的排名了,但又有另一個問題:怎麼判斷和平均數差多少?例如A的身高比平均值矮11.4公分,這樣是矮很多嗎?那他收入比平均少6.4K,這樣是少很多還是少一點點?

  會出現這個問題,就是因為身高和收入不僅有不同的單位(一個是公分,一個是千元),同時兩群數值也有各自的分散程度(各有各的標準差)。在一群很分散(標準差很大)的數值當中,跟平均差很多是很正常的事情;但在一群很集中(標準差很小)的數值當中,跟平均差很多就顯然不太正常了。

  標準分數在分母除以分數的標準差,為的就是解決單位不同與分散性不同所造成的影響。我們來看看將上圖的資料除以標準差之後是什麼樣子:

標準化之後的身高與收入資料

標準化之後的身高與收入資料

這時候會發現圖中的數值已經不再標記單位了,這是因為標準分數是沒有單位的z分數的單位就是標準差。例如剛剛舉例的A,現在我們可以知道他的身高比平均還要矮1.27個標準差,而他的月收入則比平均少0.71個標準差。

  總結來說,標準分數的重要功能在於它可以讓我們比較不同單位的分數。像上面舉例的身高和月收入,不僅單位不同,分散程度也不一樣,但在標準化之後就能讓我們比較清楚的知道這五個人在群體當中的位置大概在哪裡。

  統計學裡面也時常會面臨到要進行跨單位比較的情況,所以未來我們還是會不斷碰到「標準化」這個名詞的。



  這個月實在太過忙碌,結果拖了3週多才寫了新的一篇,希望之後出稿時間可以更穩定一點。

  描述統計大概再過一到兩篇就會結束啦~(然後是令人害怕的推論統計)

留言
avatar-img
留言分享你的想法!
Way-avatar-img
發文者
2024/06/24
統計急救箱─常態Z分數與Z檢定提及了這篇文章,趕快過去看看吧!
avatar-img
統計急救箱的沙龍
67會員
32內容數
大學念文組,碩士班的報告突然要用統計了怎麼辦?沒學過統計怎麼寫量化學位論文?跟著統計書操作都沒問題,但報表都不知道在講什麼,也不知道做的分析到底對不對?作者在應用統計的路上跌跌撞撞也差不多十年了,希望有些心得可以幫助到有這些困擾的你。
2024/12/29
  上回講了獨立樣本t test的運作原理,不過實際的計算上我們還是叫統計軟體跑。對使用者來說更重要的事情反而是──什麼時候我們該使用獨立樣本t test,以及在什麼條件下可以使用獨立樣本t test?
Thumbnail
2024/12/29
  上回講了獨立樣本t test的運作原理,不過實際的計算上我們還是叫統計軟體跑。對使用者來說更重要的事情反而是──什麼時候我們該使用獨立樣本t test,以及在什麼條件下可以使用獨立樣本t test?
Thumbnail
2024/12/15
 在實務上,t檢定最常被拿來使用的時機是檢驗兩個群體的(母體)平均數是不是相同。
Thumbnail
2024/12/15
 在實務上,t檢定最常被拿來使用的時機是檢驗兩個群體的(母體)平均數是不是相同。
Thumbnail
2024/10/20
既然現在講完t檢定的基礎了,正好是時候來談談單樣本t檢定的重要用途之一:檢定相關係數的顯著性。
Thumbnail
2024/10/20
既然現在講完t檢定的基礎了,正好是時候來談談單樣本t檢定的重要用途之一:檢定相關係數的顯著性。
Thumbnail
看更多
你可能也想看
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
介紹朋友新開的蝦皮選物店『10樓2選物店』,並分享方格子與蝦皮合作的分潤計畫,註冊流程簡單,0成本、無綁約,推薦給想增加收入的讀者。
Thumbnail
介紹朋友新開的蝦皮選物店『10樓2選物店』,並分享方格子與蝦皮合作的分潤計畫,註冊流程簡單,0成本、無綁約,推薦給想增加收入的讀者。
Thumbnail
前面兩篇會刻意提到共變數,除了因為共變數在多變量統計裡面非常重要之外,最主要的原因其實是為了解釋皮爾森相關係數而做鋪陳。 相關係數的種類也相當的繁多,這裡介紹的皮爾森相關大概是最常看到的一種啦~
Thumbnail
前面兩篇會刻意提到共變數,除了因為共變數在多變量統計裡面非常重要之外,最主要的原因其實是為了解釋皮爾森相關係數而做鋪陳。 相關係數的種類也相當的繁多,這裡介紹的皮爾森相關大概是最常看到的一種啦~
Thumbnail
如果看過上一篇還不太確定共變數要怎麼計算,這篇會用圖像的方式來進行解釋,最後也會提及共變數的小缺點。
Thumbnail
如果看過上一篇還不太確定共變數要怎麼計算,這篇會用圖像的方式來進行解釋,最後也會提及共變數的小缺點。
Thumbnail
在知道平均數與標準差之後,就可以進一步了解什麼是所謂的「標準分數」了。 標準分數的重要用途是可以幫助我們比較不同單位、不同分散程度的數值。 以概念來說,跟百分等級(PR)有點類似的味道吧。 標準分數在後續的統計當中也很常會出現的。
Thumbnail
在知道平均數與標準差之後,就可以進一步了解什麼是所謂的「標準分數」了。 標準分數的重要用途是可以幫助我們比較不同單位、不同分散程度的數值。 以概念來說,跟百分等級(PR)有點類似的味道吧。 標準分數在後續的統計當中也很常會出現的。
Thumbnail
通常討論標準差都會用面積的方式來解釋,不過有天我想也許可以用空間來解釋。 但這樣解釋對於標準差和變異數的理解似乎並不完整,可以當個有趣的觀點看看就好。
Thumbnail
通常討論標準差都會用面積的方式來解釋,不過有天我想也許可以用空間來解釋。 但這樣解釋對於標準差和變異數的理解似乎並不完整,可以當個有趣的觀點看看就好。
Thumbnail
  雖然多數人應該都知道平均數是什麼,也會計算平均數,不過平均數是統計當中非常常使用的統計量,因此還是做一些基本的介紹吧。   順便趁這機會解釋一下令人頭痛的數學公式用白話文說起來是什麼。
Thumbnail
  雖然多數人應該都知道平均數是什麼,也會計算平均數,不過平均數是統計當中非常常使用的統計量,因此還是做一些基本的介紹吧。   順便趁這機會解釋一下令人頭痛的數學公式用白話文說起來是什麼。
Thumbnail
我們常常對習以為常的名詞,忽略了背後簡單的數學概念,其實只要在生活中每一處,都把這些小地方補足,學生會很快抓到這些抽象的數學意義。
Thumbnail
我們常常對習以為常的名詞,忽略了背後簡單的數學概念,其實只要在生活中每一處,都把這些小地方補足,學生會很快抓到這些抽象的數學意義。
Thumbnail
一下的另一個單元,拆成一元一次不等式,還有屬於對數字敏銳度的比例與統計。這要分開講一下,首先談不等式,這跟之前的方程式有不小差距,許多同學會一下子轉不過來,尤其是正負號的轉變上。
Thumbnail
一下的另一個單元,拆成一元一次不等式,還有屬於對數字敏銳度的比例與統計。這要分開講一下,首先談不等式,這跟之前的方程式有不小差距,許多同學會一下子轉不過來,尤其是正負號的轉變上。
Thumbnail
同學可以懂,加上絕對值,是要讓符號出來後都是正數,但其實不懂這個過程代表什麼。絕對值的意思,是指「距離」,理論上老師上課都會說,但應該有哪邊出問題,導致筆者見到的案例,就是沒把「距離」的概念記到腦袋裡。
Thumbnail
同學可以懂,加上絕對值,是要讓符號出來後都是正數,但其實不懂這個過程代表什麼。絕對值的意思,是指「距離」,理論上老師上課都會說,但應該有哪邊出問題,導致筆者見到的案例,就是沒把「距離」的概念記到腦袋裡。
Thumbnail
  至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋。這一系列主題文章「函數微分的幾何意義」將分多集探討,用幾何角度來了解函數微分。本文章第一集將先引入代數和幾何的觀念;在概略介紹函數的圖形定義。
Thumbnail
  至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋。這一系列主題文章「函數微分的幾何意義」將分多集探討,用幾何角度來了解函數微分。本文章第一集將先引入代數和幾何的觀念;在概略介紹函數的圖形定義。
Thumbnail
這是微積分科普系列文章的第四篇,在討論微分律之前,讀者需先認識斜率的定義,並能區分平均與瞬時變化率的差異。因為微分律由導數推衍而來,而導數即是求函數圖形上,某一點的切線斜率。本文從生活中的變化講起,提出變化率的計算方式,與數學中斜率的定義。
Thumbnail
這是微積分科普系列文章的第四篇,在討論微分律之前,讀者需先認識斜率的定義,並能區分平均與瞬時變化率的差異。因為微分律由導數推衍而來,而導數即是求函數圖形上,某一點的切線斜率。本文從生活中的變化講起,提出變化率的計算方式,與數學中斜率的定義。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News