avatar-img

社會科學初心者的統計急救箱

23公開內容

大學念文組,碩士班的報告突然要用統計了怎麼辦?沒學過統計怎麼寫量化學位論文?跟著統計書操作都沒問題,但報表都不知道在講什麼,也不知道做的分析到底對不對?作者在應用統計的路上跌跌撞撞也差不多十年了,希望有些心得可以幫助到有這些困擾的你。

全部內容
免費與付費
最新發佈優先
  上回講了獨立樣本t test的運作原理,不過實際的計算上我們還是叫統計軟體跑。對使用者來說更重要的事情反而是──什麼時候我們該使用獨立樣本t test,以及在什麼條件下可以使用獨立樣本t test?
Thumbnail
您成功產出了! 👍👍👍
 在實務上,t檢定最常被拿來使用的時機是檢驗兩個群體的(母體)平均數是不是相同。
Thumbnail
既然現在講完t檢定的基礎了,正好是時候來談談單樣本t檢定的重要用途之一:檢定相關係數的顯著性。
Thumbnail
如果把前面把Z檢定和標準誤、標準差給搞懂,那麼t檢定的理解其實就滿簡單的了。 實務上來說,用Z檢定的機會其實比t檢定少。 這篇的目標就是介紹單樣本t檢定的原理,稍微有點長,比較需要耐心。
Thumbnail
終於要開始講統計檢定的實作部分了。因為是舉實例所以滿長的。 為了讓順序比較恰當,這篇比較晚發的文章被設定成假設檢定後的下一篇。
Thumbnail
  前面說明了所謂「假設檢定」的邏輯,也就是推論統計的基礎。但前面都還只是概念的階段,目前沒有真正進行任何的操作──還沒有提到推論統計的技術。   這篇其實有點像是一個過渡,是將前面的概念銜接到下一篇t分數之間的過程,也可以說是稍微解釋一下t檢定怎麼發展出來的。
Thumbnail
真是太令人感動!感謝大大的智慧結晶!
  在上一篇文章解釋了常態分布怎麼幫助我們計算事件發生的機率,而更之前也看過了抽樣分布是如何形成常態分布的過程,現在就要利用這兩件事情來慢慢帶出什麼是統計學中的「假設檢定」了。
Thumbnail
依照中央極限定理,我們可以得知(獨立且隨機樣本的)抽樣分布最終會形成常態分佈,那麼這件事情到底為什麼很重要呢? 這篇文章就來介紹一些常態分布的基本特性,以及最重要的──常態分布怎麼幫助我們計算機率。
Thumbnail
謝謝您的分享,非常專業!👍
在上一篇文章中區分了什麼是母體分布、樣本分布以及抽樣分布,另外也示範了抽樣分布的形成過程。在這一篇當中就要介紹抽樣分布與常態分佈之間到底是什麼樣的關係了。
Thumbnail
  這幾天因為選舉民調的關係,統計學一下子受到了大眾的矚目。應該很多人都經由這個機會回想起了一些曾經學過的統計學名詞,例如抽樣、區間、抽樣誤差等等。   其實這些通通都是推論統計的觀念,網路上有相當多的統計專家已經撰文解釋到底這個民調風波在吵什麼,應該不需要我野人獻曝了。   不過如果真的想要了
Thumbnail