統計急救箱──樣本變異數與標準差(二)

更新於 發佈於 閱讀時間約 5 分鐘

  在統計急救箱─樣本變異數與標準差的最後提到了變異數與標準差也可以用空間的方式來理解,只是要對向量有點基本的認識。

  其實寫完我就有點後悔,一方面是我也沒有很系統的學過線性代數,另一方面是用向量的方式理解似乎沒有比用面積來理解變異數更好。不過既然都提了,還是當作一個不同的理解方向寫出來好了。

向量的概念

  雖然高中有教過向量,這裡還是先簡單解釋一下向量是什麼。

  向量其實就是一個空間中的一個線段,但比線段多了一個屬性──方向。所以在空間中的向量會用帶有箭頭的線段來表示,這也意味著即使長度相同,方向不同都會被視為是不同的向量。

  舉個生活中的例子。假如今天中午同事拜託我去買飲料,她說出公司往東走100公尺會看到一家50嵐,結果我什麼也沒看到,打開google map一看才發現是反方向──要往西走100公尺。假如我提著飲料回座位之後,同事說:「哎呀沒差啦,都是100公尺嘛!」我以後一定不會再幫她買飲料了。

  這就是向量的意思,雖然都是100公尺(相同長度),但方向不一樣就是不同的向量。

圖一、圖中的人正從原點走向 (4, 3) 的位置,他的移動路徑是由兩條向量組成的

圖一、圖中的人正從原點走向 (4, 3) 的位置,他的移動路徑是由兩條向量組成的


座標中的直線距離

  如同圖一所表示的,在空間中沿著向量移動會抵達某個終點。但如果這時候問:「那麼這個人現在和他的出發點距離多遠呢?」此時問的是直線距離,而不是他實際移動的距離。如下圖的藍色問號。

圖二、空間中兩點的直線距離,可以用歐基里得距離來表示

圖二、空間中兩點的直線距離,可以用歐基里得距離來表示

  藍色線段的距離在平面座標上算起來也很簡單,小人現在在座標(3, 4)的位置,和原點(0, 0)之間的直線距離,可以發現和a1向量與a2向量形成一個直角三角形。根據三角形的畢氏定理,斜邊的長度就是另外兩邊的平方和開更號。所以是5。

  圖中的右側有寫上歐基里得距離的正式數學公式,就是把每個向量長度平方後相加,接著開更號就行了。換個說法就是,把目標點的座標(3, 4)裡的每個數字平方之後相加,然後開更號就行了(當然這是指和原點之間的距離才可以這樣算)。

  上面舉的是平面的例子,用直角三角形可以很簡單的算出來。不過歐基里得距離在更高維度的空間當中也是相同的計算方式,例如3D空間中:

圖三、三維空間中的歐基里得距離算法也是一樣,更高維空間也是

圖三、三維空間中的歐基里得距離算法也是一樣,更高維空間也是

基本上人類的視覺最多只能看到三維空間而已,但在數學理論中是可以有三維以上的空間的,這就畫不出來了。幸好這篇只是介紹怎麼用向量的觀點看標準差,所以接下來都是用三維空間來舉例就好了。


標準差其實是一種空間裡的直線距離

  仔細看看歐基里得距離的公式,會發現這東西好像有點眼熟......把每個數字的平方相加後開更號,是不是在算標準差的時候我們也做過一樣的事情?

圖四、歐基里得距離與標準差的公式

圖四、歐基里得距離與標準差的公式

雖然有點像,但又不完全一樣。不過如果我們做點手腳,其實就可以把標準差的公式寫成歐基里得距離。

分子的部分

  首先來處理分子的部分。

  標準差的分子是要把每個數值都減去平均值,也就是計算和平均之間的距離,並且把這個距離平方後全都加起來。

  可以想像如果把平均數當成座標軸的原點,而每一個x都是一個座標軸。在這裡我們先假設在計算3個數值的標準差,分別是x1、x2以及x3,那麼這就會形成一個三維座標空間。

圖五、原點是三個x的平均數,而三個軸分別是x1、x2以及x3

圖五、原點是三個x的平均數,而三個軸分別是x1、x2以及x3

把每一個x和平均數之間的差距畫成向量,那麼最後就等於從原點(平均數)走向某一個點。當這些向量最後的終點離原點的直線距離越遠,就可以斷定說這群x的分散程度是越高的。像是下圖這樣:

圖六、每一個x和平均數之間的差距都可以當成是一個向量(也同時是軸的方向)

圖六、每一個x和平均數之間的差距都可以當成是一個向量(也同時是軸的方向)

  像圖中所寫的那樣,如果把每個x和平均數之間的差距簡化寫成a,那麼標準差的公式會變成怎樣呢?

圖七、標準差公式可以改寫成這個樣子

圖七、標準差公式可以改寫成這個樣子

於是會發現標準差其實是兩個歐基里得距離的公式所組成的!

  分子的部分就是表示:把平均數當成原點,每一個x和平均的差距視為向量,沿著所有x產生的向量抵達終點後,該終點和原點之間的直線距離。

圖八、標準差公式的分子與分母都可以寫成歐基里得距離

圖八、標準差公式的分子與分母都可以寫成歐基里得距離


分母的部分

  在上圖當中,改寫標準差公式的時候順便連分母一起改寫了。

  雖然分母看起來也像是個歐基里得距離公式,但它又代表什麼意思呢?

  剛剛說分子的座標系,是以平均為原點,每一個x都視為一個軸所組成的。想像在同樣的一個座標系中,沿著每一軸移動1單位的距離(下圖中的橘色向量),最後抵達了一個終點(下圖中的黑點)。這個終點和原點的直線距離(下圖中的紫色虛線),就是分母代表的歐基里得距離。

圖九、紫色線段的長度就是標準差的分母代表的意思

圖九、紫色線段的長度就是標準差的分母代表的意思


標準差的空間意義

  所以我們可以看到,假如某甲從平均數出發,沿著每個x所形成的軸走一段距離,這個距離是每個x和平均數之間的差距,最後某甲會抵達一個終點。

  然後某乙也和某甲一樣沿著每一軸走一段距離,不過這次他在每一軸的移動距離都是1,最後某乙也抵達了一個終點。

  某甲與某乙接著去測量自己和原點的直線距離有多遠。他們兩人測出的直線距離分別具有下面兩個意義:

  • 某甲和原點的直線距離(下圖中的藍色虛線):當某甲離原點越遠,表示這些x之間的分散程度是越高的。
  • 某乙和原點的直線距離(下圖中的紫色虛線):沿著每一軸走1單位,也就是假定每個x和平均數都只差一單位,因此某乙和原點的直線距離可以視為是標準距離單位。

因此把某甲和原點的直線距離,除以某乙和原點之間的直線距離,就可以當作是一種分散性的指標,也就是標準差。

圖十、標準差可以視為是一種長度的比例

圖十、標準差可以視為是一種長度的比例

  換句話說,從這個角度來看標準差可以說是一種長度比例,也就是上圖藍色虛線是紫色的幾倍。



  雖然用這個角度來看待標準差的說法似乎比較少,但仔細想想這樣的角度其實相對忽略了對變異數的解釋,我個人認為可以當個有趣的想法看看就好,還是用面積的方式來理解比較恰當。

  



留言
avatar-img
留言分享你的想法!
avatar-img
統計急救箱的沙龍
68會員
32內容數
大學念文組,碩士班的報告突然要用統計了怎麼辦?沒學過統計怎麼寫量化學位論文?跟著統計書操作都沒問題,但報表都不知道在講什麼,也不知道做的分析到底對不對?作者在應用統計的路上跌跌撞撞也差不多十年了,希望有些心得可以幫助到有這些困擾的你。
2024/12/29
  上回講了獨立樣本t test的運作原理,不過實際的計算上我們還是叫統計軟體跑。對使用者來說更重要的事情反而是──什麼時候我們該使用獨立樣本t test,以及在什麼條件下可以使用獨立樣本t test?
Thumbnail
2024/12/29
  上回講了獨立樣本t test的運作原理,不過實際的計算上我們還是叫統計軟體跑。對使用者來說更重要的事情反而是──什麼時候我們該使用獨立樣本t test,以及在什麼條件下可以使用獨立樣本t test?
Thumbnail
2024/12/15
 在實務上,t檢定最常被拿來使用的時機是檢驗兩個群體的(母體)平均數是不是相同。
Thumbnail
2024/12/15
 在實務上,t檢定最常被拿來使用的時機是檢驗兩個群體的(母體)平均數是不是相同。
Thumbnail
2024/10/20
既然現在講完t檢定的基礎了,正好是時候來談談單樣本t檢定的重要用途之一:檢定相關係數的顯著性。
Thumbnail
2024/10/20
既然現在講完t檢定的基礎了,正好是時候來談談單樣本t檢定的重要用途之一:檢定相關係數的顯著性。
Thumbnail
看更多
你可能也想看
Thumbnail
沙龍一直是創作與交流的重要空間,這次 vocus 全面改版了沙龍介面,就是為了讓好內容被好好看見! 你可以自由編排你的沙龍首頁版位,新版手機介面也讓每位訪客都能更快找到感興趣的內容、成為你的支持者。 改版完成後可以在社群媒體分享新版面,並標記 @vocus.official⁠ ♥️ ⁠
Thumbnail
沙龍一直是創作與交流的重要空間,這次 vocus 全面改版了沙龍介面,就是為了讓好內容被好好看見! 你可以自由編排你的沙龍首頁版位,新版手機介面也讓每位訪客都能更快找到感興趣的內容、成為你的支持者。 改版完成後可以在社群媒體分享新版面,並標記 @vocus.official⁠ ♥️ ⁠
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
重點摘要: 6 月繼續維持基準利率不變,強調維持高利率主因為關稅 點陣圖表現略為鷹派,收斂 2026、2027 年降息預期 SEP 連續 2 季下修 GDP、上修通膨預測值 --- 1.繼續維持利率不變,強調需要維持高利率是因為關稅: 聯準會 (Fed) 召開 6 月利率會議
Thumbnail
重點摘要: 6 月繼續維持基準利率不變,強調維持高利率主因為關稅 點陣圖表現略為鷹派,收斂 2026、2027 年降息預期 SEP 連續 2 季下修 GDP、上修通膨預測值 --- 1.繼續維持利率不變,強調需要維持高利率是因為關稅: 聯準會 (Fed) 召開 6 月利率會議
Thumbnail
在平坦的歐式平面 (flat Euclidean plane) 上,方向導數 (directional derivative) 被定義為、兩個鄰近的點的方向向量之差,這也就是,把一個向量、平行輸運 (parallel transport) 到另一個向量的原點之上,然後求它們的差。
Thumbnail
在平坦的歐式平面 (flat Euclidean plane) 上,方向導數 (directional derivative) 被定義為、兩個鄰近的點的方向向量之差,這也就是,把一個向量、平行輸運 (parallel transport) 到另一個向量的原點之上,然後求它們的差。
Thumbnail
前面幾篇一直反覆提到,奠定幾何磐石的畢氏定理: x² + y² = r² 可以轉換為畢氏定理的向量表達: x x̂ + y ŷ = r r̂
Thumbnail
前面幾篇一直反覆提到,奠定幾何磐石的畢氏定理: x² + y² = r² 可以轉換為畢氏定理的向量表達: x x̂ + y ŷ = r r̂
Thumbnail
「直角三角形,其兩邊的平方之和、等於斜邊的平方。」 這就是著名的畢氏定理,可以表示為:
Thumbnail
「直角三角形,其兩邊的平方之和、等於斜邊的平方。」 這就是著名的畢氏定理,可以表示為:
Thumbnail
在知道平均數與標準差之後,就可以進一步了解什麼是所謂的「標準分數」了。 標準分數的重要用途是可以幫助我們比較不同單位、不同分散程度的數值。 以概念來說,跟百分等級(PR)有點類似的味道吧。 標準分數在後續的統計當中也很常會出現的。
Thumbnail
在知道平均數與標準差之後,就可以進一步了解什麼是所謂的「標準分數」了。 標準分數的重要用途是可以幫助我們比較不同單位、不同分散程度的數值。 以概念來說,跟百分等級(PR)有點類似的味道吧。 標準分數在後續的統計當中也很常會出現的。
Thumbnail
通常討論標準差都會用面積的方式來解釋,不過有天我想也許可以用空間來解釋。 但這樣解釋對於標準差和變異數的理解似乎並不完整,可以當個有趣的觀點看看就好。
Thumbnail
通常討論標準差都會用面積的方式來解釋,不過有天我想也許可以用空間來解釋。 但這樣解釋對於標準差和變異數的理解似乎並不完整,可以當個有趣的觀點看看就好。
Thumbnail
有關於「數與式」的內容,我們已經在上一篇文章有所討論,這篇文章,我們會探討108課綱第二章的兩個問題其中之一: 「直線與圓」搬至高一課程的影響。
Thumbnail
有關於「數與式」的內容,我們已經在上一篇文章有所討論,這篇文章,我們會探討108課綱第二章的兩個問題其中之一: 「直線與圓」搬至高一課程的影響。
Thumbnail
同學可以懂,加上絕對值,是要讓符號出來後都是正數,但其實不懂這個過程代表什麼。絕對值的意思,是指「距離」,理論上老師上課都會說,但應該有哪邊出問題,導致筆者見到的案例,就是沒把「距離」的概念記到腦袋裡。
Thumbnail
同學可以懂,加上絕對值,是要讓符號出來後都是正數,但其實不懂這個過程代表什麼。絕對值的意思,是指「距離」,理論上老師上課都會說,但應該有哪邊出問題,導致筆者見到的案例,就是沒把「距離」的概念記到腦袋裡。
Thumbnail
  至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋。這一系列主題文章「函數微分的幾何意義」將分多集探討,用幾何角度來了解函數微分。本文章第一集將先引入代數和幾何的觀念;在概略介紹函數的圖形定義。
Thumbnail
  至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋。這一系列主題文章「函數微分的幾何意義」將分多集探討,用幾何角度來了解函數微分。本文章第一集將先引入代數和幾何的觀念;在概略介紹函數的圖形定義。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News