【圖論Graph】Part1:初探圖形與圖形演算法之應用

更新於 發佈於 閱讀時間約 2 分鐘

本系列文為整理學習Graph的筆記內容,以O'REILLY圖形演算法一書為主,並且著重在圖形演算法的實作與應用。

現今資料處理上,最大的挑戰都集中在關係處理,而不只是把離散資料做成表格而已。
raw-image

什麼是圖形

  • 歷史:
    • 最早是 1736 年, Leonhard Euler 解決了柯尼斯堡七座橋的問題,七座橋問題是:柯尼斯堡有四個由七座橋相連的區域,請問是否有可能藉由七座橋走遍所有,且每座橋只能走一次( ans: 不可能)
    • 雖然是起源於數學,但是是一種實用、高保真的資料建模和分析方式
  • 定義:
    • 構成圖形的物件: 節點(Node) 和連線(Relation/Edge)
  • 圖形技術用途,例如:
    • 金融市場到資訊科技的變動環境預測
    • 預測傳染病的傳播途徑
    • 個人化的推薦與體驗

什麼是圖形分析和圖形演算法

圖形演算法是圖形分析工具的子集,圖形分析是一種動作,它使用任何圖形的方法來分析連接的資料

  • 查詢圖形資料
  • 使用基本統計資料
  • 視覺化瀏覽圖表
  • 圖形合併到機器學習任務

而這個分析的動作,稱作圖形演算法(Graph algorithm)

為什麼我們要關心圖形演算法

圖形演算法讓連結性資料更有意義,特別適合用來理解高度連接資料庫的架構,並且揭露其資料模式。

偏好依附原則(preferential attachment),當一個節點要加入網路中,會偏好已經有很多連接的節點。

這就會和常態分佈的模型有很大的差異,它甚至是呈現冪律分佈(power-law distribution)= 少數一些節點有著高度連結,大多數的節點只有少數的連接。

(有點像是 80/20 法則的感覺)

那使用常態分佈的工具去分析這些資料是很麻煩的,因為這往往會面臨資料不平均的問題,資料中可能隱藏著一個結構,但很難被找到。

圖形分析使用

圖形分析應用於預測行為和預測變動群組的行動,需要去理解群組中的關係和結構,並透過圖形演算法視察網路連結來實現。

  • 傳播途徑: 事情怎麼傳的
  • 水流與影像力: 容量和成本控制點
  • 相互作用與韌性: 如何相互作用,未來會不會改變?

這裡的意思比較抽象,大致理解在使用圖形演算法解決的問題,可以有這三種,具體的話可能要等實作真正的案例才足夠理解。

參考資料:圖形演算法:Apache Spark與Neo4j實務範例

小心得

這會是一系列的文,也是在學習圖形演算法時紀錄的筆記,預計會有的內容是:圖形的介紹、圖形演算法,像是:最短路徑、社群檢測、運用在 ML 領域... 等。如果有興趣的話,歡迎追蹤~下次見囉!

留言
avatar-img
留言分享你的想法!
avatar-img
Karen的沙龍
35會員
50內容數
歡迎來到《桃花源記》專欄。這裡不僅是一個文字的集合,更是一個探索、夢想和自我發現的空間。在這個專欄中,我們將一同走進那些隱藏在日常生活中的"桃花源"——那些讓我們心動、讓我們反思、讓我們找到內心平靜的時刻和地方
Karen的沙龍的其他內容
2024/11/16
本研究探討如何透過圖形資料庫模型來構建電子商務顧客的360度全景視圖,並使用客戶行為模型圖(CBMG)有效整合和分析客戶數據。研究強調理解顧客的行為模式和需求,並針對三種典型的購物行為類型進行分析,以提升網站設計和用戶體驗。通過Neo4j的應用,提供了可視化客戶行為模式的視角。
Thumbnail
2024/11/16
本研究探討如何透過圖形資料庫模型來構建電子商務顧客的360度全景視圖,並使用客戶行為模型圖(CBMG)有效整合和分析客戶數據。研究強調理解顧客的行為模式和需求,並針對三種典型的購物行為類型進行分析,以提升網站設計和用戶體驗。通過Neo4j的應用,提供了可視化客戶行為模式的視角。
Thumbnail
2024/07/28
本篇文章介紹如何使用PyTorch構建和訓練圖神經網絡(GNN),並使用Cora資料集進行節點分類任務。通過模型架構的逐步優化,包括引入批量標準化和獨立的消息傳遞層,調整Dropout和聚合函數,顯著提高了模型的分類準確率。實驗結果表明,經過優化的GNN模型在處理圖結構數據具有強大的性能和應用潛力。
Thumbnail
2024/07/28
本篇文章介紹如何使用PyTorch構建和訓練圖神經網絡(GNN),並使用Cora資料集進行節點分類任務。通過模型架構的逐步優化,包括引入批量標準化和獨立的消息傳遞層,調整Dropout和聚合函數,顯著提高了模型的分類準確率。實驗結果表明,經過優化的GNN模型在處理圖結構數據具有強大的性能和應用潛力。
Thumbnail
2024/07/24
透過這篇文章,我們將瞭解如何使用PyTorch實作圖神經網絡中的訊息傳遞機制,從定義消息傳遞的類別到實作消息傳遞過程。我們也探討了各種不同的消息傳遞機制,並通過對單次和多次傳遞過程的結果,可以看到節點特徵如何逐步傳遞與更新。
Thumbnail
2024/07/24
透過這篇文章,我們將瞭解如何使用PyTorch實作圖神經網絡中的訊息傳遞機制,從定義消息傳遞的類別到實作消息傳遞過程。我們也探討了各種不同的消息傳遞機制,並通過對單次和多次傳遞過程的結果,可以看到節點特徵如何逐步傳遞與更新。
Thumbnail
看更多
你可能也想看
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
在資料分析過程中,透過衡量變數之間的線性或非線性關係,能有效探索數據集,篩選出重要特徵,並進行預測建模。本文介紹瞭如何理解數據、使用相關矩陣找出變數關聯性,以及利用互資訊評估變數之間的依賴程度,幫助資料科學家在建模過程中選擇適當的變數,提升模型效果。
Thumbnail
在資料分析過程中,透過衡量變數之間的線性或非線性關係,能有效探索數據集,篩選出重要特徵,並進行預測建模。本文介紹瞭如何理解數據、使用相關矩陣找出變數關聯性,以及利用互資訊評估變數之間的依賴程度,幫助資料科學家在建模過程中選擇適當的變數,提升模型效果。
Thumbnail
Python資料視覺化在數據分析中扮演關鍵角色,透過視覺化捕捉數據模式、趨勢和異常,透過Matplotlib等工具創建專業圖表變相對簡單和高效。
Thumbnail
Python資料視覺化在數據分析中扮演關鍵角色,透過視覺化捕捉數據模式、趨勢和異常,透過Matplotlib等工具創建專業圖表變相對簡單和高效。
Thumbnail
高中數學主題練習—對數方程式
Thumbnail
高中數學主題練習—對數方程式
Thumbnail
全書主旨用圖表說好故事、強調有條理的重要性,以五個章節著重視覺呈現與表達,從各種視覺元素圖表的說明、視覺認知的去蕪存菁,到以整體設計師思維檢視圖表呈現,再以範例解析何謂美、接受度高的圖表。最後幾章節則組織整份簡報,教讀者怎麼說故事、怎麼編排敘事架構,並附上實際改造前後的案例,讓讀者從頭到尾一氣呵成。
Thumbnail
全書主旨用圖表說好故事、強調有條理的重要性,以五個章節著重視覺呈現與表達,從各種視覺元素圖表的說明、視覺認知的去蕪存菁,到以整體設計師思維檢視圖表呈現,再以範例解析何謂美、接受度高的圖表。最後幾章節則組織整份簡報,教讀者怎麼說故事、怎麼編排敘事架構,並附上實際改造前後的案例,讓讀者從頭到尾一氣呵成。
Thumbnail
【特殊圖表教學目錄傳送門 : EXCEL特殊圖表大合輯 | 持續更新中】 EXCEL中橫條圖(又稱橫向條形圖)是一種常用的圖表類型,用於以視覺化的方式表示數據。它主要用來比較不同類別之間的數據量。每個類別都有一條水平的條形,以代表該類別的數據值。這種圖表通常適合比較不同類別之間的差異。
Thumbnail
【特殊圖表教學目錄傳送門 : EXCEL特殊圖表大合輯 | 持續更新中】 EXCEL中橫條圖(又稱橫向條形圖)是一種常用的圖表類型,用於以視覺化的方式表示數據。它主要用來比較不同類別之間的數據量。每個類別都有一條水平的條形,以代表該類別的數據值。這種圖表通常適合比較不同類別之間的差異。
Thumbnail
本文介紹了如何使用資料樞紐分析的功能來整理所需的資料,並設定圖表的中文字型,最後提供了繪圖的程式碼範例。
Thumbnail
本文介紹了如何使用資料樞紐分析的功能來整理所需的資料,並設定圖表的中文字型,最後提供了繪圖的程式碼範例。
Thumbnail
Tableau是一款數據視覺化工具,目的在於簡化數據分析和決策過程。通過直觀的可視化介面,讓人們無需編程也能進行數據探索和分析。支持多種數據源,包括Excel、SQL數據庫等,透過拖放操作創建圖表和儀表板,分享洞察見解。幫助使用者和組織更加數據驅動,優化決策和業務流程
Thumbnail
Tableau是一款數據視覺化工具,目的在於簡化數據分析和決策過程。通過直觀的可視化介面,讓人們無需編程也能進行數據探索和分析。支持多種數據源,包括Excel、SQL數據庫等,透過拖放操作創建圖表和儀表板,分享洞察見解。幫助使用者和組織更加數據驅動,優化決策和業務流程
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News