機器學習基本概念簡介(上)

更新 發佈閱讀 3 分鐘

本系列是紀錄我學習機器學習的過程與想法,主要是跟著Hung-yi Lee 的機器學習課程進行學習。如果有任何理解錯誤或想討論的地方,歡迎聯繫我~

機器學習是什麼?

簡單來說,機器學習就是訓練機器尋找Function的一段過程,而這個Function可以幫助我們解決我們遇到的問題,或是幫助我們預測問題的答案。

像是語音轉換,就是讓機器學習幫助我們將一段語音訊號轉換成文字。

或是圖片辨識,機器幫助我們辨識一張圖片的內容物。

那機器學習本身也分成幾種類別:

  1. Regression: 此種機器的function輸出為數值。
  2. Classification: 此種機器的function幫助我們進行分類。
  3. Structure Learning: 讓機器學習創造有結構性的答案。EX: 寫文章


那尋找Function的過程,我們也能區分為三個步驟:

  1. 找一個函數,作為讓機器預測的Function,通常在使用Function需要有足夠的Domain Knowledge 才能知道哪種Function比較適合。

EX: Y = bx + w

2. 定義一個Loss Function L(b, w),幫助我們計算出預測的值與訓練資料(label)有多少落差(Bias),藉此可以知道我們的參數設置好不好。

*模型的預測值與實際值之間的誤差,稱為Model Bias

*針對不同的輸入資料,模型輸出的變化 (變異性) 分佈稱之為 Variance。

計算誤差可以有不同的方式,根據我們的需求決定(不僅限):

  1. MSE: mean square error (y- y')²
  2. MAE: mean absolute error |y - y'|


  1. Optimization: 想辦法讓loss最小,最常使用的方法Gradient Descent。

使用流程:

a. 先假設忽略參數b, 就可以產生一個w的曲線error surface。

b. 隨機選定一個初始值W0,將W0微分,得到W0的斜率。

c. 如果得到的斜率是負的,代表曲線是項下的 → 增加w值如果相反,則減少w值

那要增加或減少多少w值呢? -> 由learning rate決定。重複上述a~c的流程,直到我們找到最小的loss值為止(由自己設定更新的次數)。

*由自己設定的參數被稱為hyperparameter。

但在重複更新w的過程中,我們有可能遇到Local Minima 問題:

local minima就是當我們不斷計算微分值之後,當我們遇到微分後的值為0,會以為是最低點。 -> 事實上只是曲線其中一個最低點,卻不是整個曲線中最低的位置,也就不是Loss最小值。這是屬於Gradient Decent特有的問題。(其他文章補充後備註上解法位置)

將以上a~c的方法套用在兩個參數(b,w)上,各別將參數進行微分。藉此不斷更新其兩個參數值。藉此,我們就能了解error surface上的移動狀況。


raw-image


以上就被稱為機器“訓練”的過程。



留言
avatar-img
留言分享你的想法!
avatar-img
dab戴伯的沙龍
1會員
37內容數
dab戴伯的沙龍的其他內容
2024/09/03
*本文章為參考李弘毅2021年機器學習課程後的筆記。 在訓練模型的時候,常常會遇到訓練上的問題,像是Loss值太大,或是Test出來的結果不如預期,但我們又不知道模型中到底發生了甚麼事,就跟黑盒子一樣。 因此,感謝李弘毅教授傳授了一套SOP來幫助我們判斷模型是哪裡出了問題,應該要怎麼解決!!
Thumbnail
2024/09/03
*本文章為參考李弘毅2021年機器學習課程後的筆記。 在訓練模型的時候,常常會遇到訓練上的問題,像是Loss值太大,或是Test出來的結果不如預期,但我們又不知道模型中到底發生了甚麼事,就跟黑盒子一樣。 因此,感謝李弘毅教授傳授了一套SOP來幫助我們判斷模型是哪裡出了問題,應該要怎麼解決!!
Thumbnail
2024/05/16
本文介紹自我監督學習的概念和訓練方式,以BERT和GPT為例,深入探討Masking Input及Fine-Tune的實際操作和可應用性。
Thumbnail
2024/05/16
本文介紹自我監督學習的概念和訓練方式,以BERT和GPT為例,深入探討Masking Input及Fine-Tune的實際操作和可應用性。
Thumbnail
2024/05/15
這篇文章探討了生成式對抗網路中機率分佈的使用與相關的訓練方式,包括Generator不同的點、Distriminator的訓練過程、生成圖片的條件設定等。此外,也提到了GAN訓練的困難與解決方式以及不同的learning方式。文章內容豐富且詳細,涵蓋了GAN的各個相關面向。
Thumbnail
2024/05/15
這篇文章探討了生成式對抗網路中機率分佈的使用與相關的訓練方式,包括Generator不同的點、Distriminator的訓練過程、生成圖片的條件設定等。此外,也提到了GAN訓練的困難與解決方式以及不同的learning方式。文章內容豐富且詳細,涵蓋了GAN的各個相關面向。
Thumbnail
看更多
你可能也想看
Thumbnail
還在煩惱平凡日常該如何增添一點小驚喜嗎?全家便利商店這次聯手超萌的馬來貘,推出黑白配色的馬來貘雪糕,不僅外觀吸睛,層次豐富的雙層口味更是讓人一口接一口!本文將帶你探索馬來貘雪糕的多種創意吃法,從簡單的豆漿燕麥碗、藍莓果昔,到大人系的奇亞籽布丁下午茶,讓可愛的馬來貘陪你度過每一餐,增添生活中的小確幸!
Thumbnail
還在煩惱平凡日常該如何增添一點小驚喜嗎?全家便利商店這次聯手超萌的馬來貘,推出黑白配色的馬來貘雪糕,不僅外觀吸睛,層次豐富的雙層口味更是讓人一口接一口!本文將帶你探索馬來貘雪糕的多種創意吃法,從簡單的豆漿燕麥碗、藍莓果昔,到大人系的奇亞籽布丁下午茶,讓可愛的馬來貘陪你度過每一餐,增添生活中的小確幸!
Thumbnail
本文介紹了人工智慧(AI)及機器學習(ML)的基本概念和關係,探討了數據在機器學習中的重要性,以及深度學習和生成式人工智慧的應用。
Thumbnail
本文介紹了人工智慧(AI)及機器學習(ML)的基本概念和關係,探討了數據在機器學習中的重要性,以及深度學習和生成式人工智慧的應用。
Thumbnail
人工智慧是什麼? 人工智慧(Artificial Intelligence, AI) 簡單來說,就是讓機器模仿人類的思考、學習和決策的能力。它就像是一個聰明的電腦程序,可以執行許多原本需要人類智慧才能完成的工作,例如: 語音辨識: 讓電腦聽懂人類的語言,像是 Siri、Google As
Thumbnail
人工智慧是什麼? 人工智慧(Artificial Intelligence, AI) 簡單來說,就是讓機器模仿人類的思考、學習和決策的能力。它就像是一個聰明的電腦程序,可以執行許多原本需要人類智慧才能完成的工作,例如: 語音辨識: 讓電腦聽懂人類的語言,像是 Siri、Google As
Thumbnail
AI的世界充滿了創新和潛力,涵蓋了許多領域,包括但不限於機器學習,自然語言處理、電腦視覺和機器人技術。AI對人類社會的影響是複雜而多層面的,既帶來了巨大的機遇,也提出了新的挑戰。社會需要在技術發展和倫理規範之間找到平衡,確保AI技術的應用能夠真正造福人類。
Thumbnail
AI的世界充滿了創新和潛力,涵蓋了許多領域,包括但不限於機器學習,自然語言處理、電腦視覺和機器人技術。AI對人類社會的影響是複雜而多層面的,既帶來了巨大的機遇,也提出了新的挑戰。社會需要在技術發展和倫理規範之間找到平衡,確保AI技術的應用能夠真正造福人類。
Thumbnail
最新的AI趨勢讓人眼花撩亂,不知要如何開始學習?本文介紹了作者對AI的使用和體驗,以及各類AI工具以及推薦的選擇。最後強調了AI是一個很好用的工具,可以幫助人們節省時間並提高效率。鼓勵人們保持好奇心,不停止學習,並提出了對健康生活和開心生活的祝福。
Thumbnail
最新的AI趨勢讓人眼花撩亂,不知要如何開始學習?本文介紹了作者對AI的使用和體驗,以及各類AI工具以及推薦的選擇。最後強調了AI是一個很好用的工具,可以幫助人們節省時間並提高效率。鼓勵人們保持好奇心,不停止學習,並提出了對健康生活和開心生活的祝福。
Thumbnail
在機器學習領域中,監督學習、無監督學習和強化學習是三種核心方法,它們在解決不同類型的問題時發揮著重要作用。
Thumbnail
在機器學習領域中,監督學習、無監督學習和強化學習是三種核心方法,它們在解決不同類型的問題時發揮著重要作用。
Thumbnail
筆記-曲博談AI模型.群聯-24.05.05 https://www.youtube.com/watch?v=JHE88hwx4b0&t=2034s *大型語言模型 三個步驟: 1.預訓練,訓練一次要用幾萬顆處理器、訓練時間要1個月,ChatGPT訓練一次的成本為1000萬美金。 2.微調(
Thumbnail
筆記-曲博談AI模型.群聯-24.05.05 https://www.youtube.com/watch?v=JHE88hwx4b0&t=2034s *大型語言模型 三個步驟: 1.預訓練,訓練一次要用幾萬顆處理器、訓練時間要1個月,ChatGPT訓練一次的成本為1000萬美金。 2.微調(
Thumbnail
延續上週提到的,「有哪些不訓練模型的情況下,能夠強化語言模型的能力」,這堂課接續介紹其中第 3、4 個方法
Thumbnail
延續上週提到的,「有哪些不訓練模型的情況下,能夠強化語言模型的能力」,這堂課接續介紹其中第 3、4 個方法
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News