使用Meta釋出的模型,實作Chat GPT - Part 3

閱讀時間約 2 分鐘

延續使用Meta釋出的模型,實作Chat GPT - Part 2
我們已經確定可以進入HuggingFace之後,就要來載入模型,其對應程式為:

Model_Config = transformers.AutoConfig.from_pretrained(
Model_ID,
use_auth_token = HF_Auth)


Model = transformers.AutoModelForCausalLM.from_pretrained(Model_ID,
trust_remote_code = True,
config = Model_Config,
quantization_config = BitsAndBytes_Config,
device_map = 'auto',
use_auth_token = HF_Auth)


接著將模型設置為Inference模式,這時可以確認一下執行的裝置是CPU還是GPU,有GPU執行的話會快很多,然後再載入Tokenizer,它可以將一段話進行分詞,可以想像是切成一個字一個字,以便後續轉成向量給AI模型使用。

Model.eval()

print(f"Model Loaded on {Device}")

Tokenizer = transformers.AutoTokenizer.from_pretrained(
Model_ID,
use_auth_token = HF_Auth)

上述程式都輸入好之後,會長這樣,我們一樣按下「紅色框框」來執行,這部分因為涉及Meta大型語言模型下載,會需要一點時間,等待約56秒後,執行完成,「紅色框框」處會有綠色提示 (56秒處)

raw-image

再來因應個人喜好或者是行業類別,可能我們希望大型語言模型輸出某些關鍵字之後就不要繼續生成下去,這時候我們可以指定這樣的關鍵字,其配置如下:

# Define Stoping Criteria of the Model

Stop_List = ['\nHuman:', '\n```\n']
Stop_Token_IDs = [Tokenizer(x)['input_ids'] for x in Stop_List]


import torch

Stop_Token_IDs = [torch.LongTensor(x).to(Device) for x in Stop_Token_IDs]

這部分輸入好之後長這樣,我們一樣按下「紅色框框」來執行,大約一秒後,執行完成,「紅色框框」處會有綠色提示 (0秒處)

raw-image
152會員
381內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言0
查看全部
發表第一個留言支持創作者!
Learn AI 不 BI 的其他內容
背景 各位ChatGPT使用者是否常常發生以下狀況:ChatGPT跟你雞同鴨講。 原因就出在ChatGPT當初在訓練時,在你所處的專業Domain並沒有足夠的訓練資料。 針對這種情況要怎麼辦呢? 今天將介紹幾種分法來解決,並分析各種方法的優劣。 方法羅列 提示工程 (Prompt E
接著載入Part 2需要的相關依賴,其分別為: from torch import cuda, bfloat16import import transformers 然後選擇我們要的Meta模型,這邊可以是Llama 2或者是Llama 3,後者是Meta最新釋出的模型。 同時我們也讓系統自
第一步先在Python環境中安裝本次專案需要用到的Library,相關指令如下: !pip install accelerate==0.21.0 !pip install transformers==4.31.0 !pip install tokenizers==0.13.3 !pip insta
背景 各位ChatGPT使用者是否常常發生以下狀況:ChatGPT跟你雞同鴨講。 原因就出在ChatGPT當初在訓練時,在你所處的專業Domain並沒有足夠的訓練資料。 針對這種情況要怎麼辦呢? 今天將介紹幾種分法來解決,並分析各種方法的優劣。 方法羅列 提示工程 (Prompt E
接著載入Part 2需要的相關依賴,其分別為: from torch import cuda, bfloat16import import transformers 然後選擇我們要的Meta模型,這邊可以是Llama 2或者是Llama 3,後者是Meta最新釋出的模型。 同時我們也讓系統自
第一步先在Python環境中安裝本次專案需要用到的Library,相關指令如下: !pip install accelerate==0.21.0 !pip install transformers==4.31.0 !pip install tokenizers==0.13.3 !pip insta
你可能也想看
Google News 追蹤
Thumbnail
接下來第二部分我們持續討論美國總統大選如何佈局, 以及選前一週到年底的操作策略建議 分析兩位候選人政策利多/ 利空的板塊和股票
Thumbnail
🤔為什麼團長的能力是死亡筆記本? 🤔為什麼像是死亡筆記本呢? 🤨作者巧思-讓妮翁死亡合理的幾個伏筆
Thumbnail
打開這款黑色的應用程式,先輸入自我介紹,短短幾個步驟就完成註冊,這可是上星期風靡全球社群界的新話題: 「你,下載Threads了嗎?」Threads是一款介面非常簡單,類似推特(Twitter)的文字版對話應用程式,究竟它的魅力在哪阿?現在還有人在持續活躍使用嗎?
Thumbnail
PROCESS macro for SPSS 可以用非常簡單方式學會調節中介模式。本文將介紹四種類型的變項,並解釋調節式中介的公式,還有如何操作最4.0版本的PROCESS macro for SPSS。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
Thumbnail
PROCESS macro for SPSS 可以用非常簡單方式使用調節分析。本文將介紹三種類型的變項,還有如何操作最4.2版本的PROCESS macro for SPSS進行調節模式。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
Thumbnail
PROCESS macro for SPSS 可以用非常簡單方式進中介模式。本文將介紹三種類型的變項,還有如何操作最4.0版本的PROCESS macro for SPSS。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
Thumbnail
Potato Media雖然和方格子及Matters同樣歸類為寫作平台,同樣強調將內容變現,前者卻與後面兩者完全不同,當然,所獲得的收入報酬也不會一樣,更清楚一點來說,連獲得收益的方式也大不相同。
Thumbnail
我們將介紹各種類型的信度和統計方法,包含Cohen Kappa 係數、組內相關係數、α係數的SPSS教學。信度的可以使用不同的評估方法來評估。信度對於確定評分標準或量表的一致性和穩定度至關重要。
Thumbnail
如果依變項並非連續變項時,就可以改用羅吉斯迴歸。接下來本文將介紹勝算、勝算比、計算範例、二元/順序/多項式羅吉斯迴歸分析範例和SPSS操作方法。
Thumbnail
通常我們對於類別變項就直接看敘述統計大小,但如果我們想要用檢定確定兩者差距是達到統計顯著,就要用卡方檢定(Chi-square test)是一種統計學方法,獨立性考驗用於檢驗兩個類別變項各組別之間是否有顯著關聯。本文將介紹卡方檢定並介紹上機操作和事後比較方法。
Thumbnail
本篇介紹Mplus的「結構方程模型(Structural Equation Modelling, SEM)」之語法內容,並透過例題向大家示範如何分析撰寫SEM的語法。本文為新手教學,輸入方式可能不是最有效率,但是比較簡單且不太會犯錯
Thumbnail
接下來第二部分我們持續討論美國總統大選如何佈局, 以及選前一週到年底的操作策略建議 分析兩位候選人政策利多/ 利空的板塊和股票
Thumbnail
🤔為什麼團長的能力是死亡筆記本? 🤔為什麼像是死亡筆記本呢? 🤨作者巧思-讓妮翁死亡合理的幾個伏筆
Thumbnail
打開這款黑色的應用程式,先輸入自我介紹,短短幾個步驟就完成註冊,這可是上星期風靡全球社群界的新話題: 「你,下載Threads了嗎?」Threads是一款介面非常簡單,類似推特(Twitter)的文字版對話應用程式,究竟它的魅力在哪阿?現在還有人在持續活躍使用嗎?
Thumbnail
PROCESS macro for SPSS 可以用非常簡單方式學會調節中介模式。本文將介紹四種類型的變項,並解釋調節式中介的公式,還有如何操作最4.0版本的PROCESS macro for SPSS。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
Thumbnail
PROCESS macro for SPSS 可以用非常簡單方式使用調節分析。本文將介紹三種類型的變項,還有如何操作最4.2版本的PROCESS macro for SPSS進行調節模式。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
Thumbnail
PROCESS macro for SPSS 可以用非常簡單方式進中介模式。本文將介紹三種類型的變項,還有如何操作最4.0版本的PROCESS macro for SPSS。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
Thumbnail
Potato Media雖然和方格子及Matters同樣歸類為寫作平台,同樣強調將內容變現,前者卻與後面兩者完全不同,當然,所獲得的收入報酬也不會一樣,更清楚一點來說,連獲得收益的方式也大不相同。
Thumbnail
我們將介紹各種類型的信度和統計方法,包含Cohen Kappa 係數、組內相關係數、α係數的SPSS教學。信度的可以使用不同的評估方法來評估。信度對於確定評分標準或量表的一致性和穩定度至關重要。
Thumbnail
如果依變項並非連續變項時,就可以改用羅吉斯迴歸。接下來本文將介紹勝算、勝算比、計算範例、二元/順序/多項式羅吉斯迴歸分析範例和SPSS操作方法。
Thumbnail
通常我們對於類別變項就直接看敘述統計大小,但如果我們想要用檢定確定兩者差距是達到統計顯著,就要用卡方檢定(Chi-square test)是一種統計學方法,獨立性考驗用於檢驗兩個類別變項各組別之間是否有顯著關聯。本文將介紹卡方檢定並介紹上機操作和事後比較方法。
Thumbnail
本篇介紹Mplus的「結構方程模型(Structural Equation Modelling, SEM)」之語法內容,並透過例題向大家示範如何分析撰寫SEM的語法。本文為新手教學,輸入方式可能不是最有效率,但是比較簡單且不太會犯錯