上古漢語的邏輯結構 050

更新於 發佈於 閱讀時間約 2 分鐘

1.0 從函數到函算語法

raw-image


1.1 句子成份

1.2 函數概念小史

1.3 弗雷格的函數概念

弗雷格要我們注意一個現象,假如我們稱「x」為一個「論元」(argument),

1.3_7 2.132

1.3_8 2.232

1.3_9 2.332 

...

可以被視為內藏同一個函數 (2.x3+2),雖然它們各自有不同的論元 (嚴格來說是論元值﹗)。

由此,我們可以辨別

1.3_10 2.x32            

和字母

1.3_11 x

是兩個不同的東西。

事實上,上述函數可以寫作

1.3_12 2.(...)32

亦無不可。這個寫法明確指出「x」是個佔位符。

弗雷格的眼光在於他看到論元不屬於函數。按上文/弗雷格的理解,一個演算表式可以劃分成兩個部份﹕論元的符號和函數的表式﹔但兩者不同,因為論元 (即論元符號的指謂)是個數字,而且本身便已經是完整的 (即在意義上明確﹑自足),函數 (即函數表式的指謂) 不是

從「2.(...)32」表式的結構外觀便可以清楚見到函數是不完整的 (即在意義上不明確﹑不自足)。這突出了函數的一個主要特徵,就是不完整性。論元是完整的 (在所用的例子中),而函數是不完整的。一旦將兩者的位置做如上的界定,再加上我們對函數的特殊行為 (「x」的函數的值來自賦予「x」的值) 的認識,不完整 (unvollständig) 或有待飽和 (ungesättigt) 的函數可以被飽和而變得完整 (vollständig)。弗雷格稱以某論元飽和某函數的結果為「該函數以此為論元的值」47

同樣,我們也可以把

1.3_13 Caesar eroberte Gallien

[英譯﹕Caesar conquered Gall 或漢譯﹕凱撒攻佔了高盧]

一句分解作兩個部份﹕「Caesar」(凱撒) 和「eroberte Gallien」(攻佔了高盧),並且視「eroberte Gallien」為函數,「Caesar」為論元。[Frege 2008: 12]

如果我們採用這個觀點,我們可以說「Caesar eroberte Gallien」(凱撒攻佔了高盧攻佔了高盧) 是「eroberte Gallien」(攻佔了高盧) 函數以「Caesar」(凱撒) 為論元的值。

當然,對弗雷格來說,所謂的「值」(value) 是語句的真值,這是以建立他的新邏輯為目的的取向﹔但若以建立語構系統為目的,我們亦不妨視 1.3_13 的值為合式句子。

下章將詳細論述這個可能性。

__________

47 Der Wert der Funktion für dies Argument,英譯是「The value of the function for this argument」。

待續


avatar-img
7會員
335內容數
我們這裡談兩個東西: 哲學和邏輯,以及與哲學和邏輯相關的東西。 首先開設的房間是《綁架愛麗絲 之 地下邏輯》。 隨後將陸續開設《綁架愛麗絲 之 鏡像語言》和《上古漢語的邏輯結構》。 聯絡作者﹕sen.wong@protonmail.com
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
sen的沙龍 的其他內容
1.0 從函數到函算語法 1.3 弗雷格的函數概念 四 有了上述的區分,我們便要承認「2」﹑「1+1」﹑「3-1」﹑「6/3」有同一指謂。思考一下  6/3。6/3 是什麼﹖有人可能說,是個商數。但  6/3  的商數是什麼﹖這時我們會說,6/3 的商數就是乘予 3 而得出 6 的那個數。
1.0 從函數到函算語法 1.3 弗雷格的函數概念 三 弗雷格認為這樣的一個定義 —— 即李善蘭從德摩根借來的函數定義 —— 不能接受,因為它「沒有區別外型與內容﹑記號與所記 ...」43。美國邏輯學家奎因的《數理邏輯》(Mathematical Logic 1940) 在哲學和邏輯的
1.0 從函數到函算語法 1.3 弗雷格的函數概念 二 公元1891年,弗雷格給〈耶拿大學醫學及自然科學協會〉(Jenaische Gesellschaft für Medizin und Naturwissenschaft) 做了個演講,講題為〈函數與概念〉(Funktion und B
1.0 從函數到函算語法 1.3 弗雷格的函數概念 一 在歐洲,有系統地做元數學 (metamathetics)41 工作的第一人為戈特洛布‧弗雷格 (Gottlob Frege)。弗雷格是第一個對古典數學做全面反省工作的數學家。弗雷格對公元十九世紀的數學工作者嚴重不滿,認為他們做的只是計
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 四 公元1887年,德國數學家理查德‧戴德金 (Ri
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 三 必須說一下波希米亞數學家/邏輯學家/哲學家/神學
1.0 從函數到函算語法 1.3 弗雷格的函數概念 四 有了上述的區分,我們便要承認「2」﹑「1+1」﹑「3-1」﹑「6/3」有同一指謂。思考一下  6/3。6/3 是什麼﹖有人可能說,是個商數。但  6/3  的商數是什麼﹖這時我們會說,6/3 的商數就是乘予 3 而得出 6 的那個數。
1.0 從函數到函算語法 1.3 弗雷格的函數概念 三 弗雷格認為這樣的一個定義 —— 即李善蘭從德摩根借來的函數定義 —— 不能接受,因為它「沒有區別外型與內容﹑記號與所記 ...」43。美國邏輯學家奎因的《數理邏輯》(Mathematical Logic 1940) 在哲學和邏輯的
1.0 從函數到函算語法 1.3 弗雷格的函數概念 二 公元1891年,弗雷格給〈耶拿大學醫學及自然科學協會〉(Jenaische Gesellschaft für Medizin und Naturwissenschaft) 做了個演講,講題為〈函數與概念〉(Funktion und B
1.0 從函數到函算語法 1.3 弗雷格的函數概念 一 在歐洲,有系統地做元數學 (metamathetics)41 工作的第一人為戈特洛布‧弗雷格 (Gottlob Frege)。弗雷格是第一個對古典數學做全面反省工作的數學家。弗雷格對公元十九世紀的數學工作者嚴重不滿,認為他們做的只是計
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 四 公元1887年,德國數學家理查德‧戴德金 (Ri
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 三 必須說一下波希米亞數學家/邏輯學家/哲學家/神學
你可能也想看
Google News 追蹤
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
並得知根源還有虛數空間理論。
Thumbnail
邏輯不是真理,但是邏輯可以從語句提煉出真理。自古以來,人們就在尋找一套工具,用來審視事物、分析經驗、組織思想、裁決爭議,也就是能判斷真假對錯的邏輯。
Thumbnail
這篇文章,會帶著大家複習以前學過的前綴和框架, 並且以區間和的概念與應用為核心, 貫穿一些相關聯的題目,透過框架複現來幫助讀者理解這個演算法框架。 前綴和 prefix sum框架 與 區間和計算的關係式 接下來,我們會用這個上面這種框架,貫穿一些同類型,有關聯的題目 (請讀者、或觀眾
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
並得知根源還有虛數空間理論。
Thumbnail
邏輯不是真理,但是邏輯可以從語句提煉出真理。自古以來,人們就在尋找一套工具,用來審視事物、分析經驗、組織思想、裁決爭議,也就是能判斷真假對錯的邏輯。
Thumbnail
這篇文章,會帶著大家複習以前學過的前綴和框架, 並且以區間和的概念與應用為核心, 貫穿一些相關聯的題目,透過框架複現來幫助讀者理解這個演算法框架。 前綴和 prefix sum框架 與 區間和計算的關係式 接下來,我們會用這個上面這種框架,貫穿一些同類型,有關聯的題目 (請讀者、或觀眾