我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
- 訓練的必要模組安裝:AI說書 - 從0開始 - 135
- 載入資料集:AI說書 - 從0開始 - 136
- 資料集窺探:AI說書 - 從0開始 - 137
- 資料前處理與 Tokenization:AI說書 - 從0開始 - 138
- 資料 Padding 與訓練/驗證集切割:AI說書 - 從0開始 - 139
- Data Loader 設定:AI說書 - 從0開始 - 140
- BERT 模型窺探:AI說書 - 從0開始 - 141
- 載入 BERT 模型:AI說書 - 從0開始 - 142
- Optimizer 的 Decay Rate 群組配置:AI說書 - 從0開始 - 143
- BERT 模型的特定「層」參數窺探方法:AI說書 - 從0開始 - 144
- Optimizer 的 Decay Rate 群組窺探:AI說書 - 從0開始 - 145
- 配置 Optimizer 與訓練成效評估函數:AI說書 - 從0開始 - 146
- 訓練程式的撰寫:AI說書 - 從0開始 - 147
我們在 AI說書 - 從0開始 - 147 完成了訓練程式的撰寫,現在我們來看輸出長什麼樣子:

可以看到驗證集的準確度隨著訓練次數增加而提升,也可以做更細部的呈現,程式為:
plt.figure(figsize=(15,8))
plt.title("Training loss")
plt.xlabel("Batch")
plt.ylabel("Loss")
plt.plot(train_loss_set)
plt.show()
結果為:
