AI說書 - 從0開始 - 296 | 各 Tokenizer 之展示

更新於 發佈於 閱讀時間約 3 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


延續 AI說書 - 從0開始 - 295 | 各 Tokenizer 之優勢與安裝 安裝的各種 Tokenizer,我們來展示其用處:


Sentence Tokenization

其將文字分割成單獨的句子,它將段落或文件分解為句子單元,展示如下:

text = "This is a sentence. This is another one."
sentences = sent_tokenize(text)
print("Sentence Tokenization:")
print(sentences)

結果為:

raw-image


Word Tokenization

其將序列 (即句子和文字) 分解為單字,它檢測標點符號和空格,例如引號和換行符號,展示如下:

sentence = "This sentence contains several words."
words = word_tokenize(sentence)
print("Word Tokenization:")
print(words)

結果為:

raw-image


Regular Expression Tokenization

其使用正規表示式,因此可以自訂函數來定義規則和模式,展示如下:

tokenizer = RegexpTokenizer(r'\w+')
text = "Let's see how to tokenize a sentence."
tokens = tokenizer.tokenize(text)
print("Regular Expression Tokenization:")
print(tokens)

結果為:

raw-image


r'\w+' 補充說明如下:

  • \w 是正規表達式中的一個預定義字符類,它匹配單詞字符,而單詞字符包含大寫英文 A 至 Z、小寫英文 a 至 z、數字 0 至 9 以及符號「 _ 」
  • + 是量詞,表示「一個或多個」前面的元素,也就是說 + 表示匹配至少一個單詞字符,匹配的字符數不限
  • r 是 Python 的「原始字符串」語法,它告訴 Python 不要對反斜線 \ 進行轉譯處理,而是將其直接傳遞给正規表達式引擎
留言
avatar-img
留言分享你的想法!
avatar-img
Learn AI 不 BI
225會員
646內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
Learn AI 不 BI的其他內容
2025/01/29
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在本章中,我們測量了 Tokenization 對 Transformer 模型後續層的影響,Transformer 模型只能關注堆疊的嵌入層和位置編碼子層中的 Tok
2025/01/29
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在本章中,我們測量了 Tokenization 對 Transformer 模型後續層的影響,Transformer 模型只能關注堆疊的嵌入層和位置編碼子層中的 Tok
2025/01/28
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 想要控管 Token ID 映射的品質,有鑑於此,先定義,先定義 Tokenizer: model_name = 'bert-base-uncased' token
Thumbnail
2025/01/28
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 想要控管 Token ID 映射的品質,有鑑於此,先定義,先定義 Tokenizer: model_name = 'bert-base-uncased' token
Thumbnail
2025/01/27
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 304 | WordPiece Tokenization 介紹與偵測 講 WordPiece Tokenizer,而 AI說書 - 從
Thumbnail
2025/01/27
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 304 | WordPiece Tokenization 介紹與偵測 講 WordPiece Tokenizer,而 AI說書 - 從
Thumbnail
看更多
你可能也想看
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 304 | WordPiece Tokenization 介紹與偵測 講 WordPiece Tokenizer,而 AI說書 - 從
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 304 | WordPiece Tokenization 介紹與偵測 講 WordPiece Tokenizer,而 AI說書 - 從
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Sentence Piece Tokenizer 在 Unigram 語言模型 Tokenizer (見 AI說書 - 從0開始 - 300 | Unigram Lan
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Sentence Piece Tokenizer 在 Unigram 語言模型 Tokenizer (見 AI說書 - 從0開始 - 300 | Unigram Lan
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 295 | 各 Tokenizer 之優勢與安裝、AI說書 - 從0開始 - 296 | 各 Tokenizer 之展示、AI說書 -
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 295 | 各 Tokenizer 之優勢與安裝、AI說書 - 從0開始 - 296 | 各 Tokenizer 之展示、AI說書 -
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 295 | 各 Tokenizer 之優勢與安裝 及 AI說書 - 從0開始 - 296 | 各 Tokenizer 之展示,我們繼續
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 295 | 各 Tokenizer 之優勢與安裝 及 AI說書 - 從0開始 - 296 | 各 Tokenizer 之展示,我們繼續
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 295 | 各 Tokenizer 之優勢與安裝 安裝的各種 Tokenizer,我們來展示其用處: Sentence Toke
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 295 | 各 Tokenizer 之優勢與安裝 安裝的各種 Tokenizer,我們來展示其用處: Sentence Toke
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 287 | Tokenizer 重要性範例之資料準備,接著來執行 Tokenization: sample = open("text
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 287 | Tokenizer 重要性範例之資料準備,接著來執行 Tokenization: sample = open("text
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 整理目前手上有的素材: 準備資料集:AI說書 - 從0開始 - 162 | 準備Pretrain模型需要的資料 準備必備函數庫:AI說書 - 從0開始 - 163
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 整理目前手上有的素材: 準備資料集:AI說書 - 從0開始 - 162 | 準備Pretrain模型需要的資料 準備必備函數庫:AI說書 - 從0開始 - 163
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 整理目前手上有的素材: 準備資料集:AI說書 - 從0開始 - 162 | 準備Pretrain模型需要的資料 準備必備函數庫:AI說書 - 從0開始 - 163
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 整理目前手上有的素材: 準備資料集:AI說書 - 從0開始 - 162 | 準備Pretrain模型需要的資料 準備必備函數庫:AI說書 - 從0開始 - 163
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News