閘極長度

更新於 發佈於 閱讀時間約 9 分鐘

閘極長度是什麼?

「閘極長度」(Gate length)大約10奈米,是所有構造中最細小也最難製作的,因此我們常常以閘極長度來代表半導體製程的進步程度,這就是所謂的「製程節點」(Node)。.

台積電的2奈米、3奈米是什麼?和最強競爭者英特爾差距多少?

台積電的奈米製程是什麼?3奈米、N3和N3E有何不同?台積電最強對手英特爾,在晶圓技術上的差異是什麼?

https://www.cw.com.tw/article/5125326

台積電-英特爾-晶片-晶圓技術-奈米製程

文 /曲建仲/ 葉芷娟

發布時間:2023-04-12

台積電的奈米製程是什麼?

我們將電的主動元件(二極體、電晶體)與被動元件(電阻、電容、電感)縮小以後,製作在矽晶圓或砷化鎵晶圓上,稱為「積體電路」(IC:Integrated Circuit),其中「堆積」(Integrated)與「電路」(Circuit)是指將許多電子元件堆積起來的意思。

當你將電子產品打開以後,可以看到印刷電路板PCB,如上圖所示,上面有許多長得很像「蜈蚣」的積體電路(IC),積體電路的尺寸有大有小,我們以處理器為例邊長大約20毫米,上面一小塊正方形稱為「晶片」或「晶粒」,晶片邊長大約10毫米,晶片上面密密麻麻的元件稱為「電晶體」,電晶體邊長大約100奈米,而電晶體上面尺寸最小的結構稱為「閘極長度」大約10奈米(nm),這個就是我們常聽到的台積電「10奈米製程」。

10奈米到底有多小呢?細菌大約1微米(病毒大約100奈米,1000奈米等於1微米)。換句話說,人類現在的製程技術可以製作出只有病毒1/10(10 奈米)的結構,厲害吧!

但是現在的技術越做越進步,所以連3奈米,甚至2奈米都要出來了。

那麼, 什麼是場效電晶體(FET:Field Effect Transistor)呢?

電晶體的種類很多,先從大家耳熟能詳的「MOS」來說明。MOS的全名是「金屬―氧化物―半導體場效電晶體」(MOSFET:Metal Oxide Semiconductor Field Effect Transistor), 構造如圖右所示,左邊灰色的區域叫做「源極」,右邊灰色的區域叫做「汲極」,中間有塊金屬(紫色)突出來叫做「閘極」,閘極下方有一層厚度很薄的氧化物(綠色),因為中間由上而下依序為金屬(Metal)、氧化物(Oxide)、半導體(Semiconductor),因此稱為「MOS」。

MOSFET 的工作原理很簡單,電子由左邊的源極流入,經過閘極下方的電子通道,由右邊的汲極流出,中間的閘極則可以決定是否讓電子由下方通過,有點像是水龍頭的開關一樣,因此稱為「閘」;電子是由源極流入,也就是電子的來源,因此稱為「源」;電子是由汲極流出,看看說文解字裡的介紹:汲者,引水于井也,也就是由這裡取出電子,因此稱為「汲」。

MOSFET 是目前半導體產業最常使用的一種場效電晶體(FET),科學家將它製作在矽晶圓上,是數位訊號的最小單位,我們可以想像一個MOSFET 代表一個0或一個1,就是電腦裡的一個位元。

電腦是以0與1兩種數位訊號來運算,我們可以想像在矽晶片上有數十億個MOSFET,就代表數十億個0與1,再用金屬導線將這數十億個MOSFET 的源極、汲極、閘極連結起來,電子訊號在這數十億個0 與1 之間流通就可以交互運算,最後得到使用者想要的加、減、乘、除運算結果,這就是電子計算機或電腦的基本工作原理。晶圓廠像台積電、聯電,就是在矽晶圓上製作數十億個MOSFET 的工廠。

「閘極長度」(Gate length)大約10奈米,是所有構造中最細小也最難製作的,因此我們常常以閘極長度來代表半導體製程的進步程度,這就是所謂的「製程節點」(Node)。閘極長度會隨製程技術的進步而變小,從早期的0.18、0.13微米,進步到90、65、45、22、14奈米,到目前最新的製程10、7、5奈米,甚至未來的3奈米。當閘極長度越小,則整個MOSFET 就越小,而同樣含有數十億個MOSFET 的晶片就越小,封裝以後的積體電路(IC)就越小,最後做出來的手機就越小囉!

台積電第一個3奈米製程節點N3在2022年下半年開始量產,預計還會陸續推出其他4種N3節點的延伸製程,共計將有5個製程,包括:N3、N3E、N3P、N3S以及N3X。

台積電表示, 他們的2奈米, 在相同功耗下,將會比3奈米速度增快10~15%;或在相同速度下,功耗降低25~30%。此外,2奈米平台涵蓋高效能版本及小晶片整合解決方案,預計2025年開始量產。

台積電的3奈米、N3和N3E有何不同?

台積電N3技術將有四種衍生製造工藝⸺N3E、N3P、N3S和 N3X,所有技術都將支援 FinFlex™ 技術,極大化增強了設計靈活性,並允許客戶自己排列組合,針對性能、功率和面積目標,做出他們想要的最佳優化鰭配置,而且都是做在同一個晶片上。

意思就是說,當開發人員需要以性能為代價並節省功耗時,他們會使用雙柵極單鰭 FinFET。但是,當他們需要在晶片尺寸和更高功率的權衡下最大限度地提高性能時,他們會使用三柵極雙鰭電晶體。當開發人員需要平衡時,他們會選擇雙柵極雙鰭 FinFET。那麼,N3和N3e有什麼差別呢?

N3e其實是因為客戶需要更有價格競爭力的產品,所以就開發出來,其中就是少了四道EUV的光罩,也降低了成本。

台積電有說,等他們準備好生產2奈米時,就會轉向奈米片 (Nanosheet)晶體管技術,與英特爾和三星宣布要使用的技術是差不多的。奈米片是種環繞柵極 (GAA) 晶體管,有浮動晶體管鰭、柵極圍繞所以得名。之前英特爾宣布RibbonFET 計畫,技術就類似奈米片。

的確在量產時,新技術有可能會容易出問題。台積電的作法就比較不那麼激進,他們內部是這樣說的:「3奈米製程會是受歡迎節點,並是長節點,將會有大量需求。但是從3奈米到2奈米,因電晶體架構,奈米片對提高節能和計算效率有獨特優勢,觀察客戶產品,要求計算性能更高節能效果者。到時候,台積電會與2奈米製程一起銷售3奈米製程。」

各位如果去查詢台積電的專利,會發現它的GAA專利,其實是比三星多出很多,意思就是說台積電跟英特爾也都在做GAA,不過它們還在研發階段,沒有量產而已。總之,最後的決戰點,就是在2奈米的製程!

目前台積電的最大勁敵英特爾的進度,到底和台積電的差距有多少?

其實英特爾的確遇到難題。這幾年他們在7奈米和5奈米的晶圓製造進度上一再拖延,但是主要是名稱落後,實際上並沒有落後很多。

英特爾的7奈米製程,相當於台積電的5奈米製程,原本計畫2021年量產,只落後台積電5奈米製程一年,但是2021年英特爾新任執行長季辛格上台後已經宣布延後到2023年量產,一下子落後台積電三年,而10奈米產能不足造成缺貨,桌上型電腦市場被超微(AMD)領先,筆記型電腦市場也岌岌可危。

目前對英特爾最有利的方式是「立刻」將中低階產品外包給台積電,以相同的製程打敗超微奪回市場,同時替自己爭取兩年時間協調晶圓廠與設計部門把先進製程的問題解決。當然,在技術上,英特爾沒有想像中弱,季辛格是技術出身的,你可以感受到現在他就是要全力拚技術。

那英特爾的2奈米會有那些新技術呢?簡單來說,就是電源金屬(PowerVia),以及帶式場效電晶體(RibbonFET)兩項。

英特爾在晶圓技術上有台積電在前,處理器部分又有輝達和AMD在追趕,目前看起來,這個是不是只是畫了一個技術路線的時間,而且英特爾現在規劃的每年都有一個進程,依照之前的狀況,延誤的機會是很高的。事實上,英特爾就延後了5奈米的量產。以台積電來說,是以兩年為一個節點來規劃。不過呢,不管怎麼樣,都要注意英特爾的技術研發能力,這是他們最強的部分。

另外,我想提一下,雖然技術競爭上未有定數,但是在公司管理上,不要忽略台積電的利潤上的控管,一直都比同產業的公司強。我們拿英特爾來舉例,英特爾本身一直有「成本結構性問題」,投資的設備,用了2~3 年就要將設備賣到二手市場,反觀台積電成本結構,就算設備折舊5年後仍可以用個20、30年。這也是競爭力的一環,不可小覷。




留言
avatar-img
留言分享你的想法!
avatar-img
sanli chen的沙龍
4會員
148內容數
希望能將善知識加以彙整, 舉凡慈心善行義舉, 生活新知, 勵志怡情詩文, 願有助善知識流通而廣為人知, 互勉見賢思齊, 希冀有助益於捨妄施福濟祥和, 迎向人間好願景.
sanli chen的沙龍的其他內容
2024/09/29
https://hdl.handle.net/11296/2j4auy 鄭勝雄(2006)元代地震的研究: 歷史地震學是一門新興的學科。它不僅在地震研究上扮演重要的角色,同時也是災害史的一環。它結合了地震學、地質學、考古學、地理學,與歷史學等多樣的知識,涉及層面廣、也十分具有研究意義。中國是個多地
2024/09/29
https://hdl.handle.net/11296/2j4auy 鄭勝雄(2006)元代地震的研究: 歷史地震學是一門新興的學科。它不僅在地震研究上扮演重要的角色,同時也是災害史的一環。它結合了地震學、地質學、考古學、地理學,與歷史學等多樣的知識,涉及層面廣、也十分具有研究意義。中國是個多地
2024/09/26
還記得我大二上過郝俠遂老師的”生活中的化學”, 幽默風趣, 談笑風生...... http://www.core.tku.edu.tw/syl/90/814.htm http://www.core.tku.edu.tw/syl/90/main.htm 官網: http://1
2024/09/26
還記得我大二上過郝俠遂老師的”生活中的化學”, 幽默風趣, 談笑風生...... http://www.core.tku.edu.tw/syl/90/814.htm http://www.core.tku.edu.tw/syl/90/main.htm 官網: http://1
2024/09/22
二元一次聯立方程式在直角坐標平面上的圖形為兩條直線。 兩直線相交於一點: 在坐標平面上,若兩條直線相交於一點,則此點坐標即為二元一次聯立方程式的解。反之,二元一次聯立方程式恰有一組解,這組解所代表的點就是這兩個二元一次方程式在直角坐標平面上,兩直線的交點坐標。 兩直線重合: 在坐標平面上,若
2024/09/22
二元一次聯立方程式在直角坐標平面上的圖形為兩條直線。 兩直線相交於一點: 在坐標平面上,若兩條直線相交於一點,則此點坐標即為二元一次聯立方程式的解。反之,二元一次聯立方程式恰有一組解,這組解所代表的點就是這兩個二元一次方程式在直角坐標平面上,兩直線的交點坐標。 兩直線重合: 在坐標平面上,若
看更多
你可能也想看
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
我的「媽」呀! 母親節即將到來,vocus 邀請你寫下屬於你的「媽」故事——不管是紀錄爆笑的日常,或是一直想對她表達的感謝,又或者,是你這輩子最想聽她說出的一句話。 也歡迎你曬出合照,分享照片背後的點點滴滴 ♥️ 透過創作,將這份情感表達出來吧!🥹
Thumbnail
我的「媽」呀! 母親節即將到來,vocus 邀請你寫下屬於你的「媽」故事——不管是紀錄爆笑的日常,或是一直想對她表達的感謝,又或者,是你這輩子最想聽她說出的一句話。 也歡迎你曬出合照,分享照片背後的點點滴滴 ♥️ 透過創作,將這份情感表達出來吧!🥹
Thumbnail
上期有介紹過,內繞式定子加工的生產設備有分為兩種型態,分別為針嘴式與入線式;主要的差異在於馬達繞線設計上是採用集中繞或分佈繞,可參考下圖說明,集中繞就是線圈僅繞於矽鋼片上的單一齒,而分佈繞則會跨越多齒進行遶線。傳統的感應馬達以及永磁無刷馬達大多使用分佈繞的設計,新式的無刷馬則改為採用為集中繞居多,除
Thumbnail
上期有介紹過,內繞式定子加工的生產設備有分為兩種型態,分別為針嘴式與入線式;主要的差異在於馬達繞線設計上是採用集中繞或分佈繞,可參考下圖說明,集中繞就是線圈僅繞於矽鋼片上的單一齒,而分佈繞則會跨越多齒進行遶線。傳統的感應馬達以及永磁無刷馬達大多使用分佈繞的設計,新式的無刷馬則改為採用為集中繞居多,除
Thumbnail
定子代表著馬達當中不會運轉移動的部分,因此在生產加工上要考慮較為單純,不需要考慮旋轉時的離心力作用。除了傳統的有刷直流馬達採用了磁鐵作為定子的結構之外,其它種類的馬達都採用繞線式定子,主體結構也僅剩矽鋼片、絕緣材料及漆包線,而無刷馬達則可能加入了霍爾感測器(Hall Sensor),然定子整體而言的
Thumbnail
定子代表著馬達當中不會運轉移動的部分,因此在生產加工上要考慮較為單純,不需要考慮旋轉時的離心力作用。除了傳統的有刷直流馬達採用了磁鐵作為定子的結構之外,其它種類的馬達都採用繞線式定子,主體結構也僅剩矽鋼片、絕緣材料及漆包線,而無刷馬達則可能加入了霍爾感測器(Hall Sensor),然定子整體而言的
Thumbnail
在馬達的領域當中,大小其實是有明確區別的,也就是個別馬達公司或是工廠能製造的馬達是有大小差異的;以東元為例,一顆馬達可能比人還要龐大,若要求他們製作只有手掌大小的馬達時,會轉給子公司東元精電生產。因為大馬達所使用的生產設備及工法,甚至是師傅的標準作業程序等等都會與小馬達大相逕庭,無法通用。 這準則
Thumbnail
在馬達的領域當中,大小其實是有明確區別的,也就是個別馬達公司或是工廠能製造的馬達是有大小差異的;以東元為例,一顆馬達可能比人還要龐大,若要求他們製作只有手掌大小的馬達時,會轉給子公司東元精電生產。因為大馬達所使用的生產設備及工法,甚至是師傅的標準作業程序等等都會與小馬達大相逕庭,無法通用。 這準則
Thumbnail
馬達結構當中,會旋轉移動的部分,就稱為轉子;而固定不動的部分,則稱為定子。在電機產業當中,"轉子代工"一詞是針對有刷馬達的繞線轉子而言,因其組成結構較為複雜,至少包括了軸心、矽鋼片、漆包線、整流子等零配件,且加工程序除了常見的組裝配合外,還有絕緣處理、馬達繞線、整流子電焊、整流子車削、動平衡等一系列
Thumbnail
馬達結構當中,會旋轉移動的部分,就稱為轉子;而固定不動的部分,則稱為定子。在電機產業當中,"轉子代工"一詞是針對有刷馬達的繞線轉子而言,因其組成結構較為複雜,至少包括了軸心、矽鋼片、漆包線、整流子等零配件,且加工程序除了常見的組裝配合外,還有絕緣處理、馬達繞線、整流子電焊、整流子車削、動平衡等一系列
Thumbnail
製造公差是你總是會碰到的東西,因此設計時沒有適當考量下很容易發生問題。 不談電子產業,光是我從網路買回來的DIY家具就常常有組不上去的問題,這很明顯就是公差太大。大東西尚且如此,小東西更是得斤斤計較了。 在計算公差堆疊的時候的基本邏輯是:  目標尺寸鏈 -> 決定計算方法 -> 設定公差或是設定設計
Thumbnail
製造公差是你總是會碰到的東西,因此設計時沒有適當考量下很容易發生問題。 不談電子產業,光是我從網路買回來的DIY家具就常常有組不上去的問題,這很明顯就是公差太大。大東西尚且如此,小東西更是得斤斤計較了。 在計算公差堆疊的時候的基本邏輯是:  目標尺寸鏈 -> 決定計算方法 -> 設定公差或是設定設計
Thumbnail
本文針對馬達矽鋼片上的槽開口設計說明,以馬達生產的觀點來看如何規劃。 其實若以純馬達設計的觀點來說,槽開口是越小越好,以利於矽鋼片靴部吸收磁動勢;甚至取消槽開口,直接連在一起是極端的選擇,但需注意一下靴部漏磁的比例。因此槽開口的設計主要就是生產考量,更精準的說法,就是為了讓漆包線圈能順利通過槽開口進
Thumbnail
本文針對馬達矽鋼片上的槽開口設計說明,以馬達生產的觀點來看如何規劃。 其實若以純馬達設計的觀點來說,槽開口是越小越好,以利於矽鋼片靴部吸收磁動勢;甚至取消槽開口,直接連在一起是極端的選擇,但需注意一下靴部漏磁的比例。因此槽開口的設計主要就是生產考量,更精準的說法,就是為了讓漆包線圈能順利通過槽開口進
Thumbnail
上一篇介紹了細線的馬達繞線,本篇來介紹粗線的部份。 再次提醒,對於繞線時的粗細定義,與線徑、圈數及漆包線完成外徑的公差有關係,並非單純的看線徑作判斷。詳細的判斷方式,可以參考上一篇的說明。 重點整理: 馬達生產的細節很多,要能找出最大公約數才行。 馬達顧問服務
Thumbnail
上一篇介紹了細線的馬達繞線,本篇來介紹粗線的部份。 再次提醒,對於繞線時的粗細定義,與線徑、圈數及漆包線完成外徑的公差有關係,並非單純的看線徑作判斷。詳細的判斷方式,可以參考上一篇的說明。 重點整理: 馬達生產的細節很多,要能找出最大公約數才行。 馬達顧問服務
Thumbnail
本文將針對細的漆包線,來討論如何繞好線。 是否歸類為細線,其計算的概念,其實是漆包線完成外徑的公差,乘上圈數後的累積公差是否超過完成外徑的一半。由於漆包線為圓形,則當累積公差達到一半時,則線圈落下的位置會開始不穩定,一但沒有往前落下,而是向後交疊的話,線型就會開始不規則化。 馬達顧問服務
Thumbnail
本文將針對細的漆包線,來討論如何繞好線。 是否歸類為細線,其計算的概念,其實是漆包線完成外徑的公差,乘上圈數後的累積公差是否超過完成外徑的一半。由於漆包線為圓形,則當累積公差達到一半時,則線圈落下的位置會開始不穩定,一但沒有往前落下,而是向後交疊的話,線型就會開始不規則化。 馬達顧問服務
Thumbnail
本文要來探討採用針嘴式繞線機的馬達,會需要保留針嘴作業空間,其對應的生產槽滿率。 下圖為針嘴時體圖,其會進入馬達槽內的,分別有略大的頭部Ne,已即需穿過槽開口的頸部Nn,同時具備讓線穿過的中空孔Nh部份。這些尺寸都依需要繞線的漆包線徑Wd而有所變化,將其尺寸變化轉為數學式表示。 馬達顧問服務
Thumbnail
本文要來探討採用針嘴式繞線機的馬達,會需要保留針嘴作業空間,其對應的生產槽滿率。 下圖為針嘴時體圖,其會進入馬達槽內的,分別有略大的頭部Ne,已即需穿過槽開口的頸部Nn,同時具備讓線穿過的中空孔Nh部份。這些尺寸都依需要繞線的漆包線徑Wd而有所變化,將其尺寸變化轉為數學式表示。 馬達顧問服務
Thumbnail
兆赫波可以穿透紙張、衣服與牆壁,因此很有潛力應用於空氣污染減測、安檢設備及醫療攝影系統。它還可以乘載大量的資料,可用於通訊傳輸。5G技術所採用的是毫米波,而下一個更高頻的波段就是兆赫波。但是這項技術的發展卻受限於其昂貴且笨重的設備。近期開發出的「奈米電漿超快開關」,帶來了曙光,或許可以改善這個狀況。
Thumbnail
兆赫波可以穿透紙張、衣服與牆壁,因此很有潛力應用於空氣污染減測、安檢設備及醫療攝影系統。它還可以乘載大量的資料,可用於通訊傳輸。5G技術所採用的是毫米波,而下一個更高頻的波段就是兆赫波。但是這項技術的發展卻受限於其昂貴且笨重的設備。近期開發出的「奈米電漿超快開關」,帶來了曙光,或許可以改善這個狀況。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News