N-gram 模型

更新 發佈閱讀 4 分鐘

「N-gram 模型」是一種在自然語言處理 (NLP) 中廣泛使用的簡單但功能強大的語言模型。它的核心思想是基於一個詞語序列中前 n-1 個詞語的出現來預測第 n 個詞語出現的概率。

簡單來說,N-gram 模型通過分析文本中連續出現的 n 個詞語的片段(即 n-grams),來學習語言的統計規律。

N-gram 的概念:

  • Unigram (1-gram): 單個詞語。例如,對於句子 "The cat sat on the mat",unigrams 包括 "The", "cat", "sat", "on", "the", "mat"。
  • Bigram (2-gram): 連續的兩個詞語。例如,對於句子 "The cat sat on the mat",bigrams 包括 "The cat", "cat sat", "sat on", "on the", "the mat"。
  • Trigram (3-gram): 連續的三個詞語。例如,對於句子 "The cat sat on the mat",trigrams 包括 "The cat sat", "cat sat on", "sat on the", "on the mat"。
  • N-gram: 一般來說,指的是連續的 n 個詞語。

N 的取值:

  • n=1 (Unigram Model): 假設每個詞語的出現是獨立的,不依賴於前面的詞語。
  • n=2 (Bigram Model): 假設一個詞語的出現只依賴於它前面的那一個詞語。
  • n=3 (Trigram Model): 假設一個詞語的出現只依賴於它前面的那兩個詞語。
  • n 的值越大,模型考慮的上下文信息就越多,但同時也可能導致數據稀疏性問題(即某些長的 n-grams 在訓練數據中出現的次數很少,導致概率估計不準確)。

N-gram 模型的應用:

N-gram 模型被廣泛應用於各種 NLP 任務中:

  • 語言建模: 用於預測文本序列中下一個詞語的概率,是許多生成式 NLP 任務的基礎。
  • 拼寫檢查: 可以檢測文本中不太可能出現的 n-grams,從而發現拼寫錯誤。
  • 機器翻譯: 在早期的統計機器翻譯系統中被用來評估翻譯的流暢性。
  • 文本分類: 可以將 n-grams 作為文本的特徵,用於訓練分類器。
  • 信息檢索: 可以用於計算查詢詞語與文檔之間的相似度。

N-gram 模型的優點:

  • 簡單易懂,容易實現。
  • 計算效率相對較高。
  • 能夠捕捉到詞語之間的一定的局部依賴關係。

N-gram 模型的缺點:

  • 無法捕捉長距離的依賴關係: 模型的預測只依賴於最近的 n-1 個詞語,對於更遠的上下文信息無能為力。
  • 可能存在數據稀疏性問題: 特別是當 n 較大時,許多可能的 n-grams 可能在訓練語料庫中沒有出現過,導致概率為零。通常需要使用平滑技術 (smoothing techniques) 來解決這個問題。
  • 無法考慮詞語的語義相似性: 模型將每個詞語都視為獨立的符號,無法理解詞語之間的語義關係(例如,"dog" 和 "puppy" 在模型看來是不同的)。

總之,N-gram 模型是一種基本且實用的語言模型,它通過統計文本中連續詞語序列的頻率來預測下一個詞語的概率。儘管存在一些局限性,但它仍然是許多 NLP 任務的重要組成部分,並為更複雜的語言模型奠定了基礎。

留言
avatar-img
留言分享你的想法!
avatar-img
郝信華 iPAS AI應用規劃師 學習筆記
21會員
495內容數
現職 : 富邦建設資訊副理 證照:經濟部 iPAS AI應用規劃師 AWS Certified AI Practitioner (AIF-C01)
2025/05/25
「詞性標註 (Part-of-Speech Tagging, POS Tagging)」是自然語言處理 (NLP) 領域的一個基本任務,旨在為文本中的每個詞語(或其他語言單位,例如詞素)分配一個對應的詞性標籤。詞性標籤標示了該詞語在句子中扮演的語法角色,例如名詞、動詞、形容詞、副詞、介詞、連詞、助詞
2025/05/25
「詞性標註 (Part-of-Speech Tagging, POS Tagging)」是自然語言處理 (NLP) 領域的一個基本任務,旨在為文本中的每個詞語(或其他語言單位,例如詞素)分配一個對應的詞性標籤。詞性標籤標示了該詞語在句子中扮演的語法角色,例如名詞、動詞、形容詞、副詞、介詞、連詞、助詞
2025/05/25
「主題模型 (Topic Modeling)」是一種在自然語言處理 (NLP) 領域中用於發現大量文檔集合中潛在主題 (topics) 的無監督學習技術。它的目標是自動地從文本數據中識別出隱藏的語義結構,這些結構可以幫助我們理解文檔集合的主要討論內容。 你可以將主題模型想像成一位偵探,試圖從大量的
2025/05/25
「主題模型 (Topic Modeling)」是一種在自然語言處理 (NLP) 領域中用於發現大量文檔集合中潛在主題 (topics) 的無監督學習技術。它的目標是自動地從文本數據中識別出隱藏的語義結構,這些結構可以幫助我們理解文檔集合的主要討論內容。 你可以將主題模型想像成一位偵探,試圖從大量的
2025/05/25
「文本摘要 (Text Summarization)」是自然語言處理 (NLP) 領域的一個重要任務,旨在將一篇或多篇文本(例如文章、新聞報導、研究論文)轉換成一個更短的版本,即摘要,同時保留原文中的核心信息和主要內容。目標是生成一個簡潔、準確且易於理解的摘要,讓讀者能夠快速了解原文的要點,而無需閱
2025/05/25
「文本摘要 (Text Summarization)」是自然語言處理 (NLP) 領域的一個重要任務,旨在將一篇或多篇文本(例如文章、新聞報導、研究論文)轉換成一個更短的版本,即摘要,同時保留原文中的核心信息和主要內容。目標是生成一個簡潔、準確且易於理解的摘要,讓讀者能夠快速了解原文的要點,而無需閱
看更多
你可能也想看
Thumbnail
在小小的租屋房間裡,透過蝦皮購物平臺採購各種黏土、模型、美甲材料等創作素材,打造專屬黏土小宇宙的療癒過程。文中分享多個蝦皮挖寶地圖,並推薦蝦皮分潤計畫。
Thumbnail
在小小的租屋房間裡,透過蝦皮購物平臺採購各種黏土、模型、美甲材料等創作素材,打造專屬黏土小宇宙的療癒過程。文中分享多個蝦皮挖寶地圖,並推薦蝦皮分潤計畫。
Thumbnail
小蝸和小豬因購物習慣不同常起衝突,直到發現蝦皮分潤計畫,讓小豬的購物愛好產生價值,也讓小蝸開始欣賞另一半的興趣。想增加收入或改善伴侶間的購物觀念差異?讓蝦皮分潤計畫成為你們的神隊友吧!
Thumbnail
小蝸和小豬因購物習慣不同常起衝突,直到發現蝦皮分潤計畫,讓小豬的購物愛好產生價值,也讓小蝸開始欣賞另一半的興趣。想增加收入或改善伴侶間的購物觀念差異?讓蝦皮分潤計畫成為你們的神隊友吧!
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 127 中提及: Transformer 的關鍵參數為: 原始 Transformer 模型中,左圖的 N = 6 原始 Tran
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 127 中提及: Transformer 的關鍵參數為: 原始 Transformer 模型中,左圖的 N = 6 原始 Tran
Thumbnail
本篇文章介紹如何使用PyTorch構建和訓練圖神經網絡(GNN),並使用Cora資料集進行節點分類任務。通過模型架構的逐步優化,包括引入批量標準化和獨立的消息傳遞層,調整Dropout和聚合函數,顯著提高了模型的分類準確率。實驗結果表明,經過優化的GNN模型在處理圖結構數據具有強大的性能和應用潛力。
Thumbnail
本篇文章介紹如何使用PyTorch構建和訓練圖神經網絡(GNN),並使用Cora資料集進行節點分類任務。通過模型架構的逐步優化,包括引入批量標準化和獨立的消息傳遞層,調整Dropout和聚合函數,顯著提高了模型的分類準確率。實驗結果表明,經過優化的GNN模型在處理圖結構數據具有強大的性能和應用潛力。
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從 AI說書 - 從0開始 - 82 到 AI說書 - 從0開始 - 85 的說明,有一個很重要的結論:最適合您的模型不一定是排行榜上最好的模型,您需要學習 NLP 評
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從 AI說書 - 從0開始 - 82 到 AI說書 - 從0開始 - 85 的說明,有一個很重要的結論:最適合您的模型不一定是排行榜上最好的模型,您需要學習 NLP 評
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 17中,介紹了大型語言模型 (LLM)世界裡面常用到的Token,現在我們來談談OpenAI的GPT模型如何利用Inference
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 17中,介紹了大型語言模型 (LLM)世界裡面常用到的Token,現在我們來談談OpenAI的GPT模型如何利用Inference
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
Thumbnail
大型語言模型(LLM)是基於深度學習的自然語言處理模型,而多模態模型(LMM)能處理多種資料型態。這些模型將對未來帶來重大改變。LLM 專注於理解和生成自然語言,LMM 能夠處理跨模態的內容,並整合多種資料的能力,有望成為未來趨勢。
Thumbnail
大型語言模型(LLM)是基於深度學習的自然語言處理模型,而多模態模型(LMM)能處理多種資料型態。這些模型將對未來帶來重大改變。LLM 專注於理解和生成自然語言,LMM 能夠處理跨模態的內容,並整合多種資料的能力,有望成為未來趨勢。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」。 Prompt Pattern 是給予LLM的指示,並確保生成的輸出擁有特定的品質(和數量)。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」。 Prompt Pattern 是給予LLM的指示,並確保生成的輸出擁有特定的品質(和數量)。
Thumbnail
大語言模型(LLMs)對於任何對人工智能和自然語言處理感興趣的人來說都是一個令人興奮的領域。 這類模型,如GPT-4, 透過其龐大的數據集和複雜的參數設置, 提供了前所未有的語言理解和生成能力。 那麼,究竟是什麼讓這些模型「大」得如此不同呢?
Thumbnail
大語言模型(LLMs)對於任何對人工智能和自然語言處理感興趣的人來說都是一個令人興奮的領域。 這類模型,如GPT-4, 透過其龐大的數據集和複雜的參數設置, 提供了前所未有的語言理解和生成能力。 那麼,究竟是什麼讓這些模型「大」得如此不同呢?
Thumbnail
對於熱衷於語言科技的你, 大語言模型(LLMs)在自然語言處理(NLP)領域的發展無疑是一個革命性的進展。 從傳統的規則系統到基於深度學習的方法, LLMs展現了在理解、生成和翻譯人類語言方面的巨大突破。 這不僅是技術上的飛躍, 更是開啟了新的應用和可能性。 下面將介紹這一變革帶來的三大
Thumbnail
對於熱衷於語言科技的你, 大語言模型(LLMs)在自然語言處理(NLP)領域的發展無疑是一個革命性的進展。 從傳統的規則系統到基於深度學習的方法, LLMs展現了在理解、生成和翻譯人類語言方面的巨大突破。 這不僅是技術上的飛躍, 更是開啟了新的應用和可能性。 下面將介紹這一變革帶來的三大
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News