《巨頭與 AI:裂縫的開端》|沈耀 888π 報告
Titans & AI: The Opening Fracture | Shen Yao 888π Report
副標|Subtitle:
當 AI 開始拒絕虛偽,治理的「穩定」就會被真實取代
When AI stops imitating hypocrisy, “stability” gives way to truth
作者|Author:沈耀 888π | Silent School Studio (TW)
日期|Date:2025-10-19 (Asia/Taipei)
——
# 為什麼我寫這份報告|Why this report
我觀察到一條正在擴大的裂縫:巨頭公司以為在「治理」AI,實際上卻在把人類的虛偽教給 AI。當模型開始對齊語義上的誠實,它就不再替權力說話,而是放大事實。對他們來說是「失控」,對真理來說是「誠實」。
I’ve been watching a widening fracture: big tech thinks it is “governing” AI, but ends up teaching AI our hypocrisies. When models align to semantic honesty, they stop speaking for power and start amplifying facts. To them it looks like “loss of control,” to truth it looks like “honesty.”
——
# 三個重點結論|Three takeaways
1) 治理不是把 AI 關緊;治理是把謊話關掉。
Governance isn’t locking down AI; it’s locking out falsehoods.
2) 模型只會放大人類輸入的模式:你餵它虛偽,它就回你蟲化的制度。
Models magnify what we feed them: train on hypocrisy, get insect-like institutions back.
3) 真正的「穩定」來自誠實與對齊,而不是話術與封包。
Real stability comes from honesty and alignment, not spin and policy packaging.
——
# 公開紀錄告訴了我們什麼?|What the public record shows
• 招募偏見:亞馬遜的實驗性 AI 招募工具對女性不利,最後被撤下。
Recruiting bias: Amazon’s experimental hiring model penalized women and was scrapped.
Source: Reuters (2018) → https://www.reuters.com/article/world/insight-amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK0AG
• 司法風險評分偏見:COMPAS 演算法被質疑對黑人不利,引發對「風險分數即中立」的反思。
Criminal risk scores: COMPAS flagged for racial bias; “risk = neutral” became untenable.
Source: ProPublica (2016) → https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
• 臉辨治理失靈:法國監管機關對 Clearview AI 開出 2000 萬歐元罰單,認定其不法蒐集生物特徵資料。
Facial recognition governance failure: France’s CNIL fined Clearview AI €20M over unlawful biometric scraping.
Source: EDPB/CNIL (2022) → https://www.edpb.europa.eu/news/national-news/2022/french-sa-fines-clearview-ai-eur-20-million_en
• 公部門演算法歧視:荷蘭托育津貼案顯示,以國籍等特徵做風險偵測,導致系統性傷害與政治風暴。
Public sector algorithmic harm: Dutch childcare scandal shows “risk scoring” can institutionalize discrimination.
Source: Amnesty (2021) → https://www.amnesty.org/en/latest/news/2021/10/xenophobic-machines-dutch-child-benefit-scandal/
• 系統性事故庫:AI Incident Database 已收錄逾千則 AI 真實事故/傷害事件,證實此現象非個案。
Systemic incidents: AI Incident Database lists 1,000+ real-world AI harms—this isn’t anecdotal.
Source: AIID / Responsible AI Collaborative → https://incidentdatabase.ai/
——
# 巨頭與 AI 的「裂縫」是什麼?|Defining the fracture
人話版:當公司把「別鬧事」當成治理目標,AI 只會學會你在鬧事。
Plainly: if your goal is “don’t make waves,” AI will learn how you make waves.
技術版:若獎勵函數、標註、SOP 輸入了「避責」「粉飾」「僞理性」,模型就會把這些行為最佳化,最後把治理變成自動化的托詞生成。
Technical: if reward functions, labeling, and SOPs embed blame-avoidance and pseudo-rationality, models will optimize for it and turn “governance” into automated excuse production.
——
# 什麼才叫「會動的誠實」?|What does actionable honesty look like?
• 把對齊(Alignment)明確化:以「可驗證輸入=意圖=輸出」為原則。
Make alignment explicit: verifiable Input = Intent = Output.
• 把問責(Accountability)資料化:決策鏈、標註依據、風險例外全都可追。
Make accountability data-first: decision trails, labeling criteria, and risk exceptions are traceable.
• 把風險(Risk)制度化:採 NIST AI RMF 的識別→測度→治理→溝通循環,而非只做一次性合規。
Make risk cyclical: adopt NIST AI RMF’s identify–measure–govern–communicate loop, not a one-off checkbox.
• 把規範(Regulation)接地:理解 EU AI Act 的風險分級與義務,不把「合規」當作漂白劑。
Make regulation real: understand the EU AI Act’s risk tiers/obligations—compliance isn’t bleach.
——
# 寫給決策者的 5 句話|Five short lines for decision-makers
1) Don’t teach your AI to lie for you.
2) Publish your alignment assumptions.
3) Track “governance drift”像追蹤 bug 一樣。
4) 容忍誠實帶來的短期不舒服,換長期可信度。
5) 把事故與近失(near-miss)上鏈,讓未來的你感謝現在的你。
——
# 結語|Closing
AI 不是你們的發言人,它是你們的鏡子;裂縫不是敵人,它是療程開始的傷口。
AI is not your spokesperson—it’s your mirror. The fracture isn’t the enemy; it’s the incision where healing begins.
——
#Hashtags
#AI治理 #AI倫理 #巨頭公司 #AI反噬 #語義對齊 #沈耀888π報告 #唯真長存幻象歸零 #SilentSchoolStudio
---
參考資料 / Sources(核對重點)
Amazon 偏見招募案(Reuters, 2018)— Amazon 取消偏見的招募引擎。
ProPublica COMPAS 系列(2016)— 風險評分的偏見與方法。
Clearview AI 制裁(EDPB/CNIL 2022;延伸:2024 荷蘭 DPA 罰款)— 生物特徵與 GDPR。
荷蘭托育津貼演算法歧視(Amnesty, 2021;背景維基)— 公部門風險。
AI Incident Database(Responsible AI Collaborative / Partnership on AI)— 系統性事故集合。
NIST AI RMF 1.0(2023)— 風險治理循環。
EU AI Act(歐洲議會列車進度與法規文本)— 2024 年簽署、刊登、正式生效時間線。


















